
www.manaraa.com

INFORMATION TO USERS

The most advanced technology has been used to photo
graph and reproduce th is m anuscript from the microfilm
master. UMI film s the tex t d irectly from the o rig inal or
copy subm itted. Thus, some thesis and dissertation copies
are in typew riter face, while others may be from any type
of computer printer.

The quality of th is reproduction is dependent upon th e
quality of the copy subm itted. Broken or indistinct prin t,
colored or poor q u a lity illu s tra tio n s an d photographs,
print bleedthrough, substandard m argins, and improper
alignm ent can adversely affect reproduction.

In the unlikely event th a t the author did not send UMI a
complete m anuscript and there are missing pages, these
will be noted. Also, if unau thorized copyright m a te ria l
had to be removed, a note will indicate the deletion.

Oversize m aterials (e.g., maps, drawings, charts) are re
produced by section ing th e orig inal, beg inn ing a t the
upper left-hand corner and continuing from left to righ t in
equal sections w ith sm all overlaps. Each original is also
photographed in one exposure and is included in reduced
form at the back of the book. These are also available as
one exposure on a standard 35mm slide or as a 17" x 23"
black an d w hite pho tograph ic p r in t for an ad d itio n a l
charge.

Photographs included in the o rig inal m anuscrip t have
been reproduced xerographically in th is copy. H igher
quality 6" x 9" black and w hite photographic p rin ts are
available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly
to order.

University M icrofilm s International
A Bell & Howell Inform ation C om pany

300 N orth Zeeb Road. Ann A rbor M l 48106-1346 USA
313/761-4700 800-521-0600

www.manaraa.com

www.manaraa.com

Order N um ber 9004923

P roblem representation and achievem ent in com puter
program m ing: The differential effects o f inductive reasoning
skills and com puter program m ing experience

Langstaff, Janis Jacobsen, Ph.D .

The University of Iowa, 1989

C opyright © 1 9 8 9 by L angstaff, Jan is Jacobsen . A ll rights reserved.

U M I
300 N. ZeebRd.
Ann Arbor, MI 48106

www.manaraa.com

www.manaraa.com

PROBLEM REPRESENTATION AND

ACHIEVEMENT IN COMPUTER PROGRAMMING:

THE DIFFERENTIAL EFFECTS OF INDUCTIVE REASONING SKILLS

AND COMPUTER PROGRAMMING EXPERIENCE

by

Janis Jacobsen Langstaff

A thesis submitted in partial fulfillment
of the requirements for the Doctor of

Philosophy degree in Education
(Instructional Design and Technology)

in the Graduate College of
The University of Iowa

May 1989

Thesis supervisor: Associate Professor David F. Lohman

www.manaraa.com

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH. D. THESIS

This is to certify that the Ph.D. thesis of

Janis Jacobsen Langstaff

has been approved by the Examining Committee
for the thesis requirement for the Doctor o f Philosophy
degree in Educadon (Instructional Design and
Technology) at the May 1989 graduation.

Thesis committee:
Thesis supervisor

Member

Member

Member

'xt
Member

www.manaraa.com

Copyright by

JANIS JACOBSEN LANGSTAFF

1989

All Rights Reserved

www.manaraa.com

To my advisor, Dr. David F. Lohman,
and to his advisor, Dr. Richard E. Snow,

in appreciation for their
inspiration and comprehensive thinking.

www.manaraa.com

The concept of transfer occupies a crucial position in any theory attempting to relate
learning to human ability.

On Transfer and the Abilities of Man
George A. Ferguson

www.manaraa.com

ACKNOWLEDGMENTS

I am particularly grateful to the chairman of my doctoral committee, Dr. David F.

Lohman, for his inspiration, guidance and encouragement throughout my dissertation.

It's a great privilege to work with a person who deeply understands cognitive

processes and who is committed to improving education.

Special thanks to the members of my doctoral committee, Dr. Stephen B. Dunbar,

Dr. Donald L. Epley, Dr. Harold L. Schoen, and Dr. Lowell A. Schoer, Acting Dean

of the College of Education, for their helpful suggestions and encouragement. The

contributions of Dr. Glendon W. Blume, a former member of my committee, are

deeply appreciated.

Sincere appreciation to the former Chairperson of the Computer Science

Department, Dr. Theodore J. Sjoerdsma, for help designing the survey instrument and

for permission to do pilot research in his department. Thanks also to the current

Chairperson, Dr. Arthur C. Fleck, for computer time and for his cooperation. Special

thanks to Dr. R. Christiansen and his teaching assistants for their support. This

research would not have been possible without their efforts and the cooperation of the

students who served as subjects.

I wish to thank Dr. Nancy Pennington, at University o f Chicago, and Dr. Reif, at

University o f California at Berkeley, for their assistance during the pilot phase of this

dissertation. I am grateful for guidance from Dr. Michelene T. Chi from the Learning

Research Development Center, Pittsburgh.

iv

www.manaraa.com

For help designing the tasks, I wish to thank Dr, Don Epley, Hayden Huntley,

Mark Kelley, and Tony Wilson. Sincere appreciation to Bob Blankenship, Mark

Kelley, and Charles Maxon for serving as raters for this research. For data collection

assistance, I wish to thank Crystal Kohl. For word processing assistance, 1 am

grateful to Janet Emard, Rose Higgins, Jennifer and Joel Roney, Mary Ann Stone,

Martha Morrow and Eva Norlyck. For help with coding, I wish to thank Carol

Inman. Special thanks to Dara Llewellynn and Linda Bender for data entry assistance.

The support received from the user consultants at the Weeg Computer Center was

extremely helpful. Also, the large amount of computer time provided by the

University of Iowa made the project possible.

I wish to express my gratitude to my friends and relatives who provided

emotional support during this time. Special thanks to my parents, Mr. and Mrs.

Bemold M. Jacobsen, Sr..

Finally, a very special thank you is extended to my husband, Don, without whose

Jove, support, and encouragement this endeavor would not have been possible.

www.manaraa.com

ABSTRACT

Research and business firms need more programmers who have not only a strong

knowledge base in computer science but who also can solve novel problems. The

roles of both novel problem skills (inductive reasoning skills) and domain specific

knowledge were examined in a series of four studies. More specifically, this research

investigated the effects of inductive reasoning skills and computer programming

experience on problem representation and achievement in computer programming.

Study 1

The goal of the first study was to determine whether individual differences in

inductive reasoning skills and prior computer programming experience make

independent contributions to the prediction of first examination scores and course

grades in an introductory computer programming course. For predicting Exam 1

success, a model was created containing two components: inductive reasoning and

computer-related knowledge base. Computer-related knowledge base included prior

programming experience and ACT Math scores. A regression analysis revealed that

each variable in the model made a significant and approximately equal contribution to

the model. The model yielded an r-square of .31 (n = 52). Predicting Exam 1 success

was of particular interest because many students drop the course as soon as they

receive their Exam 1 scores. The same model was used for predicting course grades.

A regression analysis revealed that the model was not a good predictor of course

grades.

vi

www.manaraa.com

Study 2

The purpose of Study 2 was to ascertain if novice and intermediate level

programmers of average and high inductive reasoning skills have different

organizational categories for their new knowledge. A sorting task consisting of 30

computei programming problems was administered to students enrolled in the same

introductory programming course. The results for 17 novices and 16 intermediate level

programmers of average and high inductive reasoning skills (Qf) were analyzed using

multidimensional scaling and cluster analysis procedures. Results from the

quantitative and qualitative analyses suggested that categorization behavior is

influenced by the subject's level of inductive reasoning as well as by prior computer

programming experience. As programming experience and inductive reasoning (GO

increase, categories are based less on superficial features in the problem statements and

more on underlying solution features or strategies.

Study 3

The purpose of Study 3 was to uncover the knowledge contained in the schemata

of novice and intermediate level programmers o f average and high inductive reasoning

skills. Six novices of average and high inductive reasoning skills (GO and six

intermediate level programmers of average and high inductive reasoning skills (Gfi

completed a free association task based on category labels generated by subjects in

Study 2. Results indicated that both natural and computer associations are contained in

the schemata of novice and intermediate level programmers. Novice and experienced

programmers of high inductive reasoning skills (GO generated a greater number of

vii

www.manaraa.com

computer concepts and more complex computer definitions and examples than the

novice and intermediate level subjects o f average inductive reasoning skills (Gf).

Study 4

The purpose of Study 4 was to examine in greater detail the solution plans and

programming achievements of novice and intermediate level programmers of average

and high inductive reasoning skills (GO. Eleven of the twelve subjects who

participated in Study 3 participated in this study. The subjects were asked to think out

loud while generating their basic approaches to eleven computer programming

problems. For the last four problems, subjects wrote programs. Ratings of the

quality o f program plans did not vary markedly across the four groups of subjects.

For easier problems, Q£ was the best predictor of the rated quality o f plans; for more

difficult problems, both G f and programming experience were important, perhaps both

being required for the generation of a good plan. For the three problems requiring

programming, a correct basic approach was a good predictor of programming success.

The novices of high inductive reasoning skills (Gf) as a group showed the greatest

improvement in scores from the basic approach to actual programming. On the other

hand, the novice group with average inductive reasoning skills (Gf) did worse

translating basic approaches into solution strategies. Differences between high and

average O f experienced programmers were in the same direction, but much smaller.

Results from Studies 1-4 were discussed in terms of a process theory of aptitude

for learning from instruction (Snow & Lohman, 1984). Prior experience in computer

programming is important, although clearly not as important as inductive reasoning

skills during the early stages of learning a new computer language. Inductive

www.manaraa.com

reasoning skills develop with education and experience (Snow & Lohman, 1988). It

was concluded that the computer science curriculum can encourage the development of

inductive reasoning skills by teaching novel problem skills in the context of teaching

computer programming.

www.manaraa.com

TABLE OF CONTENTS

Page

LIST OF TABLES.. xiii

LIST OF FIGURES.. xvi

CHAPTER..

I. INTRODUCTION.. 1

Need for Computer Programmers.. 1
Purpose of the S tu d y ... 2
Background Information and Definition of Terms..................... 3
Research Problem .. 6

II. REVIEW OF THE LITERATURE... 8

Research on Problem Representation in Related Areas.............. 8
Research on the Problem Representations o f Good and

Poor Novice Problem Solvers............................ 12
Research on Problem Representation in

Computer Program m ing.. 13
Problem Solving Plans and Achievement................................... 16
Prior Programming Knowledge and Learning

a New L anguage... 17
Metatheoretical Framework: Process Theory of Aptitude for

Learning from Instruction.. 21
Computer Programming A ptitude..................... 23
Theory of Field Achievement.. 28
Overview of Research Purposes.. 29

III. STUDY 1 ... 31

M ethod... 31
Results and Discussion.. 34
Summary.. 54

IV. STUDY 2 .. 56

Overview of Research D esig n ... 56
Research Questions: Study 2 ... 57
M ethod... 57
Results and Discussion.. 59

x

www.manaraa.com

Final Discussion 76

V. STUDY 3 ... 82

Research Q uestions.. 82
M ethod .. 82
Results and D iscussion... 85
Summary... 91
Study 3 in P ersp ec tiv e ... 97

VI. STUDY 4 ... 99
Research Q uestions.. 99
M ethod .. 100
Results and Discussion... 102
Final D iscussion .. 105

VII. FINAL D ISC U SSIO N ... 108

Summary.. 110
Discussion... 112
Implications for Instruction... 116
Conclusions.. 120
Need for Further Research.. 121

REFERENCES.. 129

A PPEN D IX ...

A. STUDY 1: LEARNER CHARACTERISTICS
QUESTIONNAIRE... 130

B. STUDY 2; TABLES FOR REGRESSION ANALYSES
FOR EXAM 2 AND FINAL .. 133

C. STUDY 2: PROBLEM STATEMENTS FOR
SORTING T A S K .. 135

D. STUDY 2: SUBJECT RESPONSE FORM FOR
SORTING T A S K .. 144

E. STUDY 2: SORTING TASK: NUMBER OF CATEGORIES
FOR ALL GROUPS... 146

F. STUDY 3: NUMBER OF NATURAL AND COMPUTER
LANGUAGE CONCEPTS AND RATINGS:
DATA FOR INDIVIDUAL SUBJECTS.. 149

xi

www.manaraa.com

G. STUDY 3: NUMBER OF NATURAL AND COMPUTER
CONCEPTS PER LABEL FOR EACH G R O U P 150

H. STUDY 4: PROBLEM STATEMENTS FOR BASIC
APPROACH AND PROGRAMMING T A SK S................................ 152

xii

www.manaraa.com

LIST OF TABLES

Table Page

1. Potential Chain of Cognitive Accomplishments from
Learning Program m ing... 29

2. Mean Scores and Standard Deviations for Course E x a m s 35

3. Mean Scores and Standard Deviations for Relevant
Independent Variables.. 36

4. Frequency Counts and Percents for Categorical Subject Variables. . . . 38

5. Number of Subjects in Each Group Prior to Exam 1 and
Number Who Completed Exam 1... 40

6. The College Majors of Subjects Taking Exam 1 42

7. Intercorrelations for Course Exams and G rad e ... 42

8. Correlations Among All Subject Variables.. 44

9. Correlations Between Dependent and Subject V ariables......................... 46

10. Contributions of Each Variable in the Model for
Predicting Exam 1 Scores... 53

11. Contributions of Each Variable in the Model for
Predicting Course Grades... 54

12. Stress Values and Squared Correlations for the Solution Dimensions. . 61

13. Rater Consolidated Categories.. 72

14. Mean ACT Math Scores and Standard Deviations (S.D.) for
Novice and Intermediate Programmers of Average and High
Inductive Reasoning (G f).. 78

15. Free-Association Labels.. 84

X lll

www.manaraa.com

16. Mean Number of Natural Language Concepts for Novice
and Intermediate Programmers of Average and High Inductive
Reasoning (Gf)... 87

17. Mean Number of Computer Concepts for Novice and Intermediate
Programmers of Average and High Inductive Reasoning (G f) 87

18. Percent of Total Concepts and Programming Course Exam
Scores for Novice and Intermediate Programmers of Average and
High Inductive Reasoning (G f) ... 89

19. Mean Number of Natural Language Words for Novice and
Intermediate Programmers of Average and High Inductive
Reasoning (Gf)... 90

20. Mean Number o f Computer Words for Novice and Intermediate
Programmers of Average and High Inductive Reasoning (G f) 91

21. Means for Natural Language Concept Ratings for Novice and
Intermediate Programmers o f Average and High Inductive
Reasoning (Gf)... 94

22. Means for Computer Concept Ratings for Novice and Intermediate
Programmers of Average and High Inductive Reasoning (G f) 95

23. Total Number of Computer-Language Related Concepts with High
Ratings Generated by Each Program m er... 96

24. Basic Approach Scores for Novice and Intermediate Programmers of
Average and High Inductive Reasoning (Gf) for Problems 1-7.............. 103

25. Three Programming Problems: Basic Approach and Programming
Scores for Novice and Intermediate Programmers of Average and
High Inductive Reasoning Skills (G f).. 104

26. Summary of Regression Analysis for Exam 2 .. 133

27. Contributions of Each Variable in the Model for
Predicting Exam 2 Scores.. 133

28. Summary of Regression Analysis for Final E x a m 134

29. Contributions of Each Variable in the Model for
Predicting Final Exam S c o re s .. 134

30. Sorting Task: Number o f Categories for All G ro u p s 146

xiv

www.manaraa.com

31. Number of Natural and Computer Language Concepts and
Ratings for Each Subject (&)... 149

32. Number of Natural Language and Computer Concepts
Per Label for Each G roup.. 150

xv

www.manaraa.com

LIST OF FIGURES

Figure Page

1. The Process of Representing A Problem.. 5

2. Programmer's Knowledge in Long-term Memory...................................... 19

3. A Comparison of the Correlations Between the Dependent Variables
and Inductive Reasoning and Computer Programming Experience 48

4. Model for Predicting Exam and Course Grade S uccess............................ 51

5. Contributions of Each Independent Variable in the Model for
Exam 1 Achievem ent... 52

6. Two-dimensional Solution for Novices of Average
Inductive Reasoning.. 63

7. Two-dimensional Solution for Novices of High
Inductive Reasoning.. 64

8. Two-dimensional Solution for Intermediates of Average
Inductive Reasoning.. 68

9. Two-dimensional Solution for Intermediates of High
Inductive Reasoning.. 69

10. Mean Number of Natural Language and Computer Language
Categories Generated by Novice and Intermediate Level Programmers
of Average and High Inductive Reasoning (G f) .. 74

11. Types o f Category Responses Made by Novice and Intermediate
Level Programmers of Average and High Inductive Reasoning (Gf). . . . 75

12. Framework for Conceptualizing Problem Solving and Analogy............... 117

xvi

www.manaraa.com

1

CHAPTER I

INTRODUCTION

Need For Computer Programmers

Improvements in computer hardware have increased both the computational

power and the availability of all sizes of computers. Unlike software costs, the cost

per unit of new hardware has decreased substantially during the past thirty years. In

the mid-1950's, 90% of application costs were devoted to hardware; by the 1980’s,

however, 90% of application costs were for software (Shneiderman, 1980).

Computer software continues to be expensive to produce and to maintain.

Conventional applications of the computer continue to grow and the variety of new

uses o f the computer is increasing. The software industry has become a muldbillion

dollar international business that employs millions of people. Therefore, substantial

resources will continue to be devoted to training people in computing skills (Cetron

& O’Toole, 1982).

Professional programmers in both business and research firms today must

continuously learn new operating systems, new programming languages, new

software tools, and new hardware systems. In the context of this dynamic

environment, new knowledge is needed to solve application problems in innovative

ways. Typically, only a small percent of the programmers in a given organization

actually do the truly innovative programming, while the majority of the programmers

do lower level design and coding. Some claim that this is because many programmers

have difficulty solving novel problems. Whatever the reason, a dire need exists for

www.manaraa.com

2

more programmers who have not only a strong knowledge base in computer science

but who can also solve novel problems.

Purpose of the Study

Filling the need for highly competent programmers who can solve novel problems

is one of the training challenges of this decade. Unfortunately, little is known about

the nature of computer programming skills, and even less about the kinds of cognitive

skills people already have that might serve as a foundation for learning to program

computers. Consequendy, educators lack the knowledge necessary to provide optimal

learning conditions for teaching computer programming. In the absence of this vital

knowledge, training continues to be guided "by the tacit 'folk theories’ of

programming development that until now have served as the underpinnings of

program instruction" (Pea & Kurland, 1983, p .l). The success of current and future

training programs depends on not only an adequate understanding of the psychology

of computer programming, but also on a comprehensive understanding of the

knowledge and skills necessary for learning computer programming.

The purpose of this study is to investigate the differential effects of individual

differences in computer programming experience and inductive reasoning abilities on

achievement in an introductory programming course. Since other investigators have

examined the role of experience in learning computer programming, the particular

focus of this study will be on the contributions of inductive reasoning, that is, those

inferential processes that expand knowledge in the face of uncertainty (Holland,

Holyoak, Nisbett & Thagard, 1986). Inductive reasoning is ubiquitous in human

thinking. It involves the ability to make predictions, generalizations, and projections

from known instances to unknown, potential instances. In essence, inductive

www.manaraa.com

3

reasoning involves the transfer of the familiar to the unfamiliar or novel situation. The

question addressed in this study, then, is whether novice and experienced

programmers who differ in inductive reasoning ability perform differently on

computer programming tasks when learning a new programming language. The

answer to this question may clarify problems in the selection and training of computer

programmers.

Background Information and Definitions of Terms

Programming Defined

For the purposes of this study, computer programming is defined as "that set of

activities involved in developing a reusable product consisting of a series of written

instructions that make a computer accomplish some task" (Pea & Kurland, 1983, p.5).

Cognitive Subtasks Involved in Programming

From a psychological point of view, computer programming requires both

general problem-solving skills and domain-specific knowledge. Problem-solving is

typically decomposed into five stages: understanding the problem, devising a plan,

implementing the plan, evaluating a potential solution, and improving the plan (Mayer,

1983: Polya, 1973). In computer programming, these cognitive subtasks roughly

translate as: (a) understanding the programming problem, (b) designing or planning a

programming solution, (c) writing a programming code that implements a plan, (d)

comprehending and debugging the program. Some theorists assert that all the above

subtasks are required for programming, whether the programmer is a novice or an

expert (Pea & Kurland, 1983). Stages 1 and 2, understanding the programming

problem and designing a program, are of critical importance in this study.

www.manaraa.com

4

Problem Representation

The notion of problem representation is important in this investigation of

computer programming and induction. Cognitive theorists assert that problem solvers

construct representations of the problems they are attempting to solve. The problem

representation is the problem solver’s understanding of the problem. It includes the

solver's linguistic, factual, strategic, and other knowledge about the problem. It also

may contain a mental model of the to-be-solved problem. The elements of the model

stand as tokens for aspects of the problem. The problem solver manipulates these

tokens using some system of rules. The solution to this simplified problem is then

mapped back on to the original problem. For example, the problem solver may solve a

time-rate-distance problem by imagining two cars approaching each other on a

highway. Figure 1 illustrates the process of representing a problem. The problem

statement cues associations in the problem solver's knowledge base. For experienced

problem solvers, this knowledge base is organized by problem types. Each problem

type includes some information on solution strategy. So perhaps the problem solver

decides that the problem in question is an instance of a time-rate-distance (or "T4”)

problem. This conjecture becomes an important aspect of the problem representation.

The problem solver also reads the problem for information about inputs, outputs, and

constraints and adds this information to the problem representation.

The Role of Inductive Reasoning in Representing A Problem

The quality of the problem representation the problem solver constructs gready

influences how easily a problem can be solved (Hayes & Simon, 1977; Newell &

Simon, 1972). Holland, Holyoak, Nisbett and Thagard (1986) assert that induction

plays a vital role in generating a problem representation. Inductive processes are

www.manaraa.com

5

Figure 1. The Process o f Representing A Problem

PROBLEM-SOLVING
PLANS

Inductive
Process

i
PROBLEM REPRESENTATION

‘ Relevant Linguistic and ‘ Inputs
Factual Knowledge for ‘ O utpu ts
Type=4 Problems (T4) ‘ C o n s t ra in ts

‘ Model

71
Inductive

/ P rocess

<S> <S)
KNOWLEDGE BASE

(2) Problem Types

Inductive
Process

Assoc ia t ive
P rocess \

PROBLEM STATEMENT

Note. It is assumed that other cognitive processes are involved in addition to
inductive and associative processes.

www.manaraa.com

6

involved in gathering inputs from the problem statement and knowledge base to create

the problem representation. After the problem representation is created, inductive

reasoning skills are vital in helping the problem solver design a plan for solving the

problem. Figure 1 illustrates this process. Induction consists of generating and

revising the units of the problem representation from which mental models are

constructed. "Mental models are built by integrating knowledge in novel ways in

order to achieve the system's goal" (p. 14). If this is true, then different levels of

inductive reasoning abilities should differentially effect the problem representations

and thus the mental models students construct and hence their solutions to problems.

This study attempts to explore the role of inductive reasoning on problem

representation and achievement in computer programming.

Skill differences in problem representation and solution strategy have been

investigated by many researchers (for details see Chapter II). However, previous

researchers of programming-skill learning have not explored the effects of individual

differences in inductive reasoning skill on problem representation and solution plans.

Research Problem

The purpose of this dissertation is to investigate the differential effects of

computer programming experience and inductive reasoning abilities on problem

representations, solution plans, and learning outcomes of students enrolled in an

elementary computer programming course. Four studies are reported. The goal of the

first study is to determine whether individual differences in inductive reasoning

abilities and prior computer experience make independent contributions to the

prediction of examination scores and course grades in an introductory Pascal course.

www.manaraa.com

7

Problem representation is explored in Studies 2 and 3, whereas solution plans are

investigated in Study 4. More specifically, Studies 2, 3, and 4 examine in greater

detail the particular contributions of experience and inductive reasoning abilities to

students’ categorization of programming problems (Study 2), to the contents of their

problem schemas (Study 3), and to the problem-solving plans they construct (Study

4).

www.manaraa.com

8

CHAPTER II

REVIEW OF THE LITERATURE

Research on problem representations and solution plans is first presented,

followed by research on the effects of prior computer experience on learning a new

language. Next, the metatheoretical framework for this study is introduced including

research on computer programming aptitude. The chapter concludes with an overview

of the four studies in this dissertation.

Research on Problem Representation in Related Areas

Before reviewing the relevant literature, a distinction needs to be made concerning

differences between problem-solving research in knowledge-rich domains such as

physics or radiology and problem-solving research in knowledge-lean domains such

as computer science. As mentioned previously, the problem representation is at least

in pan constructed from domain-related knowledge. In addition, the problem

representation should include information about the inputs, outputs, and constraints in

the problem statement, and a mental model of the problem. Research on problem

representation in computer science is based more on this latter type of knowledge

derived from the problem rather than on domain-related knowledge such as statistics or

accounting. (However, for experienced programmers the problem representation also

is based on computer programming knowledge.) This is an important distinction,

especially when comparing studies of problem solving in physics and other fields with

studies of problem solving in computer science. This issue does not pose an

www.manaraa.com

9

ecological validity problem for this study because the target population is introductory

computer language classes where domain knowledge (e.g., banking, etc.) is kept to a

minimum.

Problem representation has been studied in the context of a variety of tasks-from

puzzle-like problems (Wertheimer, 1945; Hayes & Simon, 1977) to physics problems

and electronic trouble-shooting (Larkin, 1977, Egan & Schwartz, 1979, Chi,

Feltovich, & Glaser, 1981). Researchers agree that the problem solver attempts to

understand problems by constructing an initial problem representation. The efficiency

and accuracy of the solver's further thinking is determined by the quality,

completeness, and coherence of this initial representation. Furthermore, these three

characteristics of the problem representation are greatly influenced by the knowledge

available to the problem solver and how that knowledge is organized. The major

findings on problem representation relevant to the proposed study can be summarized

by examining the literature on skill differences in chess, Go, physics, electronics, and

computer science. In chess, de Groot (1966) demonstrated that after a brief exposure

to a chessboard display, master-level players were able to recall about twice as many

chess plays as were beginners. DeGroot attributed the master players' performance to

an ability to classify groups of pieces as instances of familiar playing categories.

Chase and Simon (1973) replicated de Groot's findings and went on to characterize the

chunks used by chess masters. They found that chunks frequently consisted of chess

pieces that formed specific strategies, such as attack or defense configurations. Chase

and Simon s work suggests that masters have identified the functional relationships

that occur between the pieces during the game. Masters use their knowledge of

www.manaraa.com

10

functional relationships to create internal representations o f typical chess

configurations (Adelson, 1981).

Like Chase and Simon (1973), Reitman (1976) found that master Go players

encode game-board pieces as functional clusters. That is, pieces forming attack or

defense configurations (Adelson, 1981) are encoded together.

An example from the field of electronics further extends these findings. Egan and

Schwartz (1979) found that skilled electronic technicians recall the elements o f a circuit

diagram in functional chunks. Also, the technicians can rapidly identify a concept that

serves to relate elements in a chunk. These experts systematically search circuit

diagrams for elements that are conceptually related. Egan and Schwartz suggest that,

through experience, technicians develop functionally-based schemata. Furthermore,

expert technicians have developed knowledge about how to use these schemata.

Reif (1979) has proposed a problem-solving model in which the first step

involves representing or redescribing the problem in terms of concepts provided by the

knowledge base. This knowledge base is organized according to problem schemata,

each of which, Reif hypothesizes, contains information necessary to solve a specific

category of problem. In the process of identifying a problem as an instance of a

particular type of problem, associations cue information in the knowledge base.

An exemplary study by Chi, Feltovich, and Glaser (1981) explored these and

related hypotheses. Chi and her colleagues investigated both problem and plan

representations in problem solving in the field of physics. They explored how experts

and novices form an initial understanding of a problem, and how they use this

information in generating a strategy for solving a problem. In a series of studies, these

researchers attempted to determine: (a) the categories that experts and novices impose

www.manaraa.com

11

on physics problems; (b) the knowledge which these categorical representations

activate in the problem solver, and (c) the cues or features of problems which subjects

use to choose among alternative categories.

Eight advanced Ph.D. students from the physics department (experts) and eight

undergraduates (novices) participated. The novices had just completed a semester of

mechanics. Twenty-four problems were selected from a textbook on the fundamentals

of physics. The subjects were asked to sort the problems into groups based on

similarities of solution. Subjects did not actually solve the problems in order to sort

them. Results indicated that experts and novices categorized problems differently.

Novices sorted physics textbook problems on the basis of the apparatus involved

(lever, inclined plane, etc.), the words used in the problem statement, or the visual

features of the diagram presented with the problem. In contrast, experts sorted the

same problems on the basis of a solution strategy. More specifically, experts

classified physics problems on the basis of the underlying physics principles that were

needed to solve the problem (e.g., Newton’s Second Law). For both experts and

novices, Chi et al. (1981) claimed that the use of these categories elicits a knowledge

structure (a schema) that functions in the representation of a problem. For experts, at

least, this schema included potential solution methods.

In addition to a sorting task, a second problem-solving task was administered to a

new group of novices and experts. Subjects were asked to read problems and to

indicate their "basic approach" for solving the problem. Experts interpreted this basic

approach as the identification of the major principles they would apply to solve the

problems. This task elicited three physics principles even more consistently than the

sorting task. The response of the novices to this task produced, by contrast, either the

www.manaraa.com

12

most general kind of abstracted solution methods or the actual detailed sets of

equations for solving the problem.

Research on the Problem Representations of
Good and Poor Novice Problem Solvers

Differences in problem representations also exist between good and poor novice

problem solvers. For example, Silver (1979) found that differences between novices

rated as "good" or "poor" problem solvers were similiar to the sort of differences Chi

et al. (1981) found between experts and novices. Studies of the problem-solving

behavior of novices have been conducted in several domains, such as geology

(Shavelson & Stanton, 1975), psychology (Fenker, 1975), and physics (deJong &

Ferguson-Hessler, 1986; Thro, 1978). For example, deJong and Ferguson-Hessler

(1986) investigated whether good novice problem solvers have their knowledge

arranged around problem types to a greater degree than poor problem solvers.

Twelve problem types were identified on the topic of electricity and magnetism in

the field of physics. These problem types were distinguished according to their

underlying physics principles. For each problem type, a set of elements of knowledge

containing characteristics of the problem situation was constructed. In addition, every

problem type consisted o f at least one element of declarative knowledge (i.e., facts,

concepts, or principles) and one of procedural knowledge (i.e., knowledge of how to

process or manipulate information to accomplish a task). The resulting 65 elements

were printed on cards.

After completing an examination on electricity and magnetism, subjects were

asked to sort the 65 cards into piles. Good problem solvers sorted the cards according

to problem types, whereas poor solvers sorted to a greater extent by the surface

www.manaraa.com

13

characteristics of the elements. DeJong and Ferguson-Hessler concluded that "an

organization of knowledge around problem types might be highly conducive to good

performance in problem solvers" (p.279).

Organization of knowledge changes importantly with instruction. After

instruction, novices appear to organize their knowledge more like experts than before

instruction, at least those novices who receive good grades in a course (Snow &

Lohman, 1988).

Research on Problem Representation in
Computer Programming

Unlike the excellent research on problem categorization in physics

problem-solving, little empirical research exists on how computer programmers

categorize problems. Several proposals regarding categorization by experts have been

suggested and are summarized by Pea and Kurland (1983):

1. Function-oriented categorization. Problems would be categorized by different

program-goals or functions in terms of what is to be accomplished, such as: "update

inventory accounts and produce repons" (e.g., Balzer, Goldman & Wile, 1977;

Shneiderman & Mayer, 1979).

2. Data/process-oriented categorization. Problems would be categorized by

external object classes (e.g., updates, inventory accounts, status report) and operations

(e.g., transform initial objects fo final ones) applied to specific classes of objects

(Brooks, 1982; Miller & Goldstein, 1977).

3. Sequence-oriented categorization. Problems would be categorized by

decomposing them into their basic components or procedures and the sequences for

executing these components (e.g., Atwood, Jeffries, & Poison, 1980).

www.manaraa.com

14

Some evidence exists on the organization of the programming knowledge that

helps structure the plan representation. Similar to the Chase and Simon (1973)

findings for chess experts, several studies have demonstrated that expert computer

programmers perceive and remember larger chunks of information than do novices,

and thus can recall more lines of a normal program-listing than can novices (Sheppard,

Curtis, Milliman, & Love, 1979; Shneiderman, 1977). Consistent with findings in

other domains, novices and experts show equally poor memory for scrambled listings.

McKeithen, Reitman, Rueter, & Hirtle (1981) replicated and further extended these

findings by investigating the details of programmers' chunks of key programming

concepts. They found that experts cluster keyword commands according to

programming knowledge (e.g., a cluster of words that are normally found together in

a loop statement). Novices, on the other hand, associate the programming concepts

with a rich variety of natural-language associations. Intermediate programmers make

both programming-language and natural-language associations.

Similarly, Adelson (1981) found that recall clusters for experts were semantically

based whereas those for novices were syntactically based. Furthermore, some

evidence suggested that experts used a hierarchical organization based on procedural

similarity. The novices, on the other hand, did not relate the items within a category in

an organized way. In a subsequent study, Adelson (1984) further investigated the

nature of the knowledge representions of experts and novices. Her data suggests that

the more abstract problem representation of the expert contains more general

knowledge about what the program does (i.e., output specifications). For example, an

expert might indicate that a solution to a particular indexing problem consists of three

main procedures: (a) read in the set of key terms, (b) compare the key terms in the

www.manaraa.com

15

text, and (c) store the resulting index. According to Adelson, these elements that

describe the operation of the problem are used in the representation of the problem

because they are "easy to work with and easy to change" (Adelson, 1984, p.495).

Consequently, they allow the expert to find an optimal solution to a problem.

Unlike the problem representations of experts, the representations of novices

appear to be more concrete in that they contain information about the method the

program uses to achieve a particular result (i.e., algorithms). For example, in a

problem involving a sort routine, the novice would indicate a specific type of sort,

such as a bubble sort.

Other than the reasearch of Adelson (1981, 1984) and of McKeithen et al. (1981),

little evidence is available on the knowledge schemas of expert computer

programmers. However, several proposals for schemas have been suggested, and are

summarized by Pea and Kurland (1983):

1. An expert's programming knowledge schemas might include anything from

transactions (less than a programming statement) to chunks (units that accomplish

particular goals) to higher level chunks (familiar algorithms) (Mayer, 1981).

2. The expert's schemas might be organized in a hierarchy of patterns from

operations (compare two numbers) to small algorithms (sum an array) to large

algorithms (bubble sort) to program patterns (Shneiderman, 1980; Shneiderman &

Mayer, 1979).

3. Schemas might include known solutions/plans/plan elements (Atwood,

Jeffries & Poison, 1980; Balzer & Wile, 1977; Miller & Goldstein, 1979).

4. The expert's programming knowledge schemas might contain high-level

programming units, such as loop and recursion structure (Rich, 1981; Rich & Shrobe,

www.manaraa.com

16

1979; Soloway & Woolf, 1980; Soloway, Ehrlich, Bonar, and Greenspan, 1982).

5. Other theorists have proposed that the expert's schemas contain building block

units such as basic loop, augmentation, and filter (Waters, 1979).

6. In addition, schemas might include categories with internal structure, such as

rules for data structures, enumerations (looping constructs), mappings, etc. (Barstow,

1977).

Problem Solving Plans and Achievement

In the previous section, research on the problem representations of novice and

expert computer programmers was summarized. In the present study, problem

representation differences between novice and intermediate programmers in an

introductory computer programming course in Pascal were investigated. In addition,

this study explored problem-solving plans and student achievement in the context of

the course.

One of the most relevant studies in the computer science literature is probably a

study by Soloway, Ehrlich, Bonar, and Greenspan (1982) on learning Pascal.

Soloway et al. (1982) attempted to identify the needs of novice programmers by

understanding the source of their programming difficulties. One topic of investigation

was bugs and misconceptions about loops. These researchers posed the following

question: "Does choosing the appropriate loop construct (i.e., for, repeat, or while,

depending on context) for a given problem facilitate the production of a correct

program solution?" (p.43). Soloway and his colleagues reasoned that if a student

chooses the correct loop construct, then the student might know more about

programming, and thus be more likely to write a correct program; alternatively, the

www.manaraa.com

17

loop construct itself might impose constraints that enable the student to identify the

components of the loop.

Results indicated that the students (novices and intermediates) who chose the

appropriate loop construct were only slightly more likely to write correct programs

than were students who chose an incorrect loop construct. Therefore, choice of the

appropriate loop construct (e.g., a "for" loop) was not a good predictor of program

correctness. However, choice o f the appropriate looping strategy was a predictor of

correct programs. An example of a looping strategy is the Read/Process Strategy. It

specifies that "the actions that ’read a value, then process it’ are nesting in a repetition

loop" (Soloway et al., 1982, p.34).

Research on problem representations and solution plans has been presented. In

this dissertation, the influence of prior computer experience on learning a new

computer language also was explored. In the following section, this topic will be

discussed from both teaching and research perspectives.

Prior Programming Knowledge and Learning a New Language

Instructional Research

Instructors of programming languages agree that prior programming experience

influences the learning of subsequent programming languages. This phenomenon is

particularly obvious when teaching an introductory computer language course to a

class composed of experienced programmers and students with no prior computer

programming experience.

Shneiderman and Mayer (1979) maintain that it is unwieldy to teach

non-programmers and programmers a new language in the same course. They explain

www.manaraa.com

18

their theory in relation to semantic and syntactic knowledge in long-term memory.

Syntactic knowledge refers to a user's knowledge of the basic elements of

language code including line numbers, key words, variable names, numeric values,

arithmetic symbols, logical symbols, and punctuation. Syntactic knowledge also

includes the knowledge of rules for ordering the basic elements of the language code

within a line of code and rules for ordering lines of code (Dyck & Mayer, 1989).

According to Shneiderman and Mayer, this knowledge is more precise and arbitrary.

Consequently, syntactic knowledge is more easily forgotten than semantic knowledge,

which is generalizable over different syntactic representations.

Semantic knowledge refers to the meaning of a statement or of a program module.

This knowledge is more generic than syntactic knowledge. It has been gained through

programming experience and instruction. Semantic knowledge has been abstracted

from these experiences and stored as sets of general, meaningful information that are

more or less independent of the syntactic knowledge of particular programming

languages. For example, an experienced programmer knows that sequencing and

iteration are relevant in all programming languages. This distinction between syntactic

and semantic knowledge in long-term memory is summarized in Figure 2 (from

Shneiderman & Mayer, 1979).

The results of several studies indicate that previous programming language

experience influences the learning of subsequent programming languages (Lucas &

Kaplan, 1974; Sheppard, Curtis, Millman, & Love, 1979; Shneiderman & Mayer,

1979; Ricardo, 1983; Taylor & Mounfield, 1989). For example, Ricardo reported a

correlation of .16 (significant at .01 level) between prior programming experience and

introductory course achievement.

www.manaraa.com

19

Figure 2. Programmer's Knowledge in Long-term Memory

High Level
Concepts

Low Level
Details

Semantic
Knowledge

COBOL

PL/I
3RTRAN

LISP

Syntactic
Knowledge

Note. From “Syntactic/semantic interactions in programmer behavior:
A model and experimental results” by B. Shneiderman and R.E. Mayer,
1979, International Journal of Computer and Information Sciences. 8 ,
p. 223. Copyright 1979 by Plenum Publishing Corporation. Repro
duced by permission.

In summary, there seems to be agreement between computer educators and

researchers that prior computer programming influences the learning of subsequent

programming languages. However, little empirical research exists on the cognitive

structures and processes which may transfer when an additional programming

language is learned.

Transfer

The subject of transfer in the programming literature has been approached mainly

www.manaraa.com

20

from the perspective of the question, "What problem-solving skills from programming

transfer to other subjects or tasks?". Although a few studies have reported positive

transfer, most report no transfer between programming and other types of

problem-solving. For reviews, see Blume (1984), Dalbey and Linn (1985), Pea and

Kurland (1984), and Salomon and Perkins (1987).

As previously mentioned, one focus of this exploratory study is on transfer from

one programming language to another. An informal assessment on this topic was

reported by Linn (1985). From a group of 2400 high school students studying

BASIC, twenty-four students comprising the top 1% were selected. These students

were introduced to an elementary programming language called Spider World (Dalbey,

1983). After a brief introduction, students attempted to write three programs.

According to Linn, many of these students handled the programming problems with

obvious procedural skill. In a few cases, students used general plans seemingly

generalized from BASIC.

A study by McKeithen (1979) also reports some preliminary evidence of

cognitive structures that transfer when learning a new programming language.

McKeithen studied the memory organization of computer programmers. The purpose

of her study was to determine the content of a chunk or memory unit, formed from

ALGOL W reserved words, thereby displaying their organization. Reserved words

are names reserved for a specific purpose in the programming language. For example,

the word "string" cannot be used as a user variable.

McKeithen hypothesized that chunk content would vary with experience level.

Twenty-two subjects participated in this study: seven ALGOL experts, six novices

(one course in ALGOL), eight naive subjects, and one general expert. The general

www.manaraa.com

21

expert had no hours of programming in ALGOL W; however, he was familiar with the

language. In addition, he met the programming experience criteria for expertise (2000

hours of programming experience).

The results from this study suggested that experts have similar memory

structures. Memory structure was estimated by applying a clustering algorithm to each

subject's recall data. The procedure outputs a tree-structure which summarizes the

orgnization of concepts for the subject. McKeithen conjectures that the clustering or

memory trees of experts look alike because the experts used the same basis of

organization for the ALGOL W reserved words—the ALGOL W statements.

Statements refer to algorithmic actions which are executable. The particularly relevant

finding, however, is that the memory tree of the general expert (no prior ALGOL

programming) was more like the memory trees of the experts than like the memory

structures of the novices (one course in ALGOL). The general expert used statements

from either other programming languages or ALGOL W to organize the ALGOL W

words. McKeithen suggests that one effect of experience on programmers is the habit

of thinking in terms of language structures. Since only one general expert participated

in this study, further research is needed to confirm and extend these findings.

Is prior computer experience the main variable influencing achievement in an

introductory programming course? Perhaps computer-programming aptitude is

important as well.

Metatheoretical Framework: Process Theory of
Aptitude for Learning from Instruction

A process theory of aptitude for learning from instruction (Snow & Lohman,

1984) provides a context for exploring the relationship between computer learning and

www.manaraa.com

22

aptitude. Aptitude processes are defined as "those predictable, directed changes in

psychological functioning by which some individual learners adapt to the short-term

and long-term demands of instructional conditions while others do not” (Snow, 1980).

The term "aptitude" also implies that the individual difference construct of interest is

not merely correlated with success in the treatment but is needed as a preparation to

achieve that success. In educational environments, then, aptitude refers to readiness to

learn from a particular instructional method (Snow & Lohman, 1984). This theory is

unique in that it attempts to account for changes in both stable and dynamic systems:

stable cognitive changes reflect modifications in the information being processed, due

to the sequence of operations performed; dynamic cognitive changes refer to changes

that result from the processing of incoming information and the monitoring of that

information. To account for learning, the cognitive system has to be dynamic.

Snow and Lohman propose that both ability test and learning task performance

involve not only stable system change, but also adaptive or dynamic system change.

Furthermore, they hypothesize that the most important aspects of the dynamic system

are assembly and control processes-"higher order strategic processes involved in the

organization, reorganization, and monitoring of component processes within a task"

(p.l 1). Individual differences in these higher-order processes are predicted to be a

principal source of ability-learning correlations in education. Snow and Lohman

interpret these ability-learning correlations as signifying aptitude transfer-following

old leads from Ferguson (1954,1956) and Hunt (1961).

Higher-order strategic processes are of particular importance in complex ability

tests and learning tasks. The work of Glaser (1980) supports this hypothesis:

www.manaraa.com

23

A reasonable prediction is that individual differences in the cognitive
components of aptitude measures will be more effectively analyzed as the
result of variations in higher level strategies than as a result of the more
molecular aspects of elementary processes such as speed of retrieval from
STM [short-term memory]. These higher-level strategies will interact with
knowledge-based declarative and procedural information to yield the
cognitive basis of individual differences in cognitive competence and style.
(pp.313-314)

Aptitude processes need to be understood at both the micro and molar level.

Micro level refers to the changes that occur during learning or information processing

that are discemable in short time-frames (seconds, minutes, etc.), whereas molar level

refers to changes during long time-frames (week-to-week, month-to-month, etc.)

(Snow, 1981). These molar changes that occur over accumulated instruction are

referred to as "accretion", "restructuring", and fine-tuning of organized knowledge and

skill (Rumelhart & Norman, 1978). This study will deal with changes that occur at

both micro and molar levels (e.g., from a four-minute free-association task in Study 3

to a final semester exam).

Computer Programming Aptitude

Since computer courses were fust introduced into universities, computer

educators and researchers have hypothesized about potential computer programming

aptitudes. As previously mentioned, several researchers have noted that prior

programming experience seems to influence learning a new programming language.

What other variables appear to be strong predictors of programming achievement?

Empirical evidence suggests that math training and/or ability correlate with college

computer science performance (e.g., Peterson & Howe, 1979; Butcher & Muth, 1985;

Kovalina, Wileman & Stephans, 1983; Alspaugh, 1972). Other researchers argue that

command of one's native language correlates with programming success (Kurtz, 1980;

www.manaraa.com

24

Wills, 1982). Empirical evidence by Sauter (1986) suggests that both mathematical

aptitude and language aptitude are associated with programming skill. Math aptitude

was associated with the ability to learn rules of logic, whereas language aptitude was

associated with an ability to leam syntactic rules.

A model for predicting success in an Introduction to Computers course was

developed by Peterson and Howe (1979). Their research indicated that only college

GPA and general intelligence (as measured by the General Aptitude Test Battery,

GATB) contributed significantly to the model. Forty percent of the variance in course

grade was explainable by their model.

Kurtz (1980) had difficulty confirming and extending the model proposed by

Peterson and Howe. A substantial number of students in an introductory class are

either freshmen or transfer students; therefore, college GPA data was not a good

variable to use for prediction purposes. Also, Kurtz had little success with

performance measures similar to IQ-type items. Consequently, Kurtz constructed an

"intellectual development" measure for his prediction study on introductory computer

programming achievement. His test contained fifteen items in ten areas of formal

reasoning. Students were classified as one of the following: late concrete reasoners,

early formal reasoners, or late formal reasoners. Kurtz found that late concrete

reasoners received poor test grades, whereas late formal reasoners received

outstanding grades.

Ricardo (1983) validated a new measure of computer-programming aptitude, the

Programming Readiness Test. This test consists of three parts: deductive reasoning,

persistence, and inductive reasoning. Each of the three parts correlated with an exam

score (r - .34 to .44) and final grade (r = .29 to .39) for an introductory computer

www.manaraa.com

25

programming course. (For a comprehensive review o f the history of

computer-aptitude tests used in business and academic environments, refer to Ricardo,

1983.)

In summary, researchers have found that computer programming aptitude is

related to some degree to math training and/or ability, language aptitude and native

language achievement, grade-point average, general intelligence, formal reasoning,

persistence, deductive and inductive reasoning.

The underlying assumption of traditional prediction studies is that

undifferenciated "faculties" or "powers”, such as general intelligence or math aptitude,

transfer to the new computer language environment and are instrumental in computer

programming achievement. This approach yields useful information for screening

purposes. It addresses the student’s aptitudes and the results of the student's behavior

but does not shed light on the processes involved in the acquisition of computer

programming skill. That is, the traditional approach does not inform us about the

possible trainable information processing skills and strategies essential for computer

programming achievement. This dissertation research includes the traditional

regression approach to the study of computer programming aptitude (Study 1) as well

as an information processing approach (Studies 2-4). (For a discussion of the

information processing approach to the study o f abilities, refer to Snow and Yalow

(1982).)

Computer-Programming Aptitude: Inductive Reasoning

The focus of this study is aptitude for computer programming. More specifically,

inductive reasoning will be the aptitude to be investigated, since transfer o f knowledge

www.manaraa.com

26

and strategies depends to some extent on inductive thinking skills. An individual may

have relevant background knowledge yet may not be able to connect such knowledge

to the learning of a computer programming language. Tasks and tests designed for

measuring inductive thinking may serve as a predictor of computer programming

development and of the quality and degree of transfer outcomes.

In this study, Raven's Advanced Progressive Matrices (Raven, 1977) is used to

measure inductive reasoning. Success on this complex reasoning task depends upon

the learner's ability to adapt flexibly what he or she has learned from previous

problems in the test to new, more difficult problems.

Fluid and Crystallized Abilities

Another name for inductive reasoning is fluid ability (Gf). It is facility in

reasoning, particularly where adaptation to new situations is required. Raven's

Advanced Progressive Matrices (1977) is a standard task for measuring fluid ability

(Gf). Gf generally predicts learning in novel instructional situations. For example, an

art major who decides to become a business major will be required to develop new

ways of thinking in order to solve business course-related problems. In this study,

high Q f refers to people who had the highest scores on the Raven's task—a test of

inductive reasoning aptitude. Average Qf refers to those students who scored the

lowest on the Raven’s task.

Crystallized ability (Gc) represents "a coalescence of organization of prior

knowledge and educational experience into functional cognitive systems for retrieval

and skilled application to aide further learning in future educational situations" (Snow,

1980, p.58). For example, biology graduate students build upon their knowledge

www.manaraa.com

27

base from their undergraduate training. According to Snow and Yalow (1982), "the

transfer producing this coalescence need not be only of specific knowledge but also of

organized processing strategies we think of as academic learning skills" (p.519). In

this study, crystallized ability (Gel is represented as the experience or prior learning

dimension. More specifically, high Gc refers to people who have programming

experience and who are currently learning a new language. Low Gc refers to people

who have no or little prior experience with programming.

This information processing approach to Gf and G£ is relatively new (Snow &

Yalow, 1982). In the psychometric tradition, G f and Gc were discussed as

undifferentiated powers that transfer. The current approach is based on ideas from

Hunt (1961) and from Ferguson’s (1954,1956) early view that abilities develop as a

function of leaming-to-leam and transfer. Locke and Dewey's themes are woven into

the new approach as well. Snow and Yalow summarize this promising approach to

abilities:

Ability is attained through experience over time and consolidated through
exercise. Skill in one kind of task performance transfers to performances on
other tasks as a function of the similarity between tasks. Abilities thus
develop as transfer relations within a class of tasks. Aptitude for learning,
then, is readiness to transfer prior ability to new performances on similar
tasks. In the new language, however, it is information processing skills and
strategies rather than undifferentiated "powers" or "faculties" that transfer.
(pp.516-517)

These information processing skills range from estimates of elementary cognitive

processes (such as speed of retrieval of information from LTM) to general

problem-solving strategies (such as means-ends analysis). Thus,

. . . . there may be elementary information processes that are common to the
performance programs for different tasks. These can account for some of
the relations among tasks that we take as indicative of transferable ability.
However, there may also be higher-order processes that learn to assemble

www.manaraa.com

28

and transfer relations among performance tasks, (p.517)

Theory of Field Achievement

In addition to testing hypotheses related to a theory of aptitude, it is hoped that

this study will contribute to a theory of field achievement. The purpose of a theory of

field achievement is "to understand the facets of learning outcome, particularly those

leading to retention and transfer, that constitute sought-after changes in content and

process structures for the learner" (Snow & Lohman, 1984, p.353). For this study, a

theory of field achievement would include an understanding of cognitive

accomplishments from learning programming, particularly those leading to retention

and transfer to subsequent computer language courses and other problem-solving

areas. A model developed by Linn (1985) and her colleagues includes the major

components of a theory of field achievement for computer programming: (a) learning

the computer language features or syntax; (b) learning how to design programs to

solve problems; (c) learning problem-solving skills applicable to other formal systems.

Table 1 gives greater detail on the main features of the model.

This study investigates many of the outcomes outlined in Linn's model on

cognitive accomplishments from computer learning. More specifically, this study

investigates whether students with previous computer language experience use

generalized templates in learning a new computer language. Furthermore, it

investigates whether the degree of transfer is influenced by individual differences in

inductive reasoning ability (Gf) as measured by Raven’s Advanced Progressive

Matrices.

www.manaraa.com

29

Table 1. Potential Chain of Cognitive Accomplishments from Learning Programming

1. Learn the language features (syntax).

2. Learn to design programs to solve problems.

Develop a repertoire of templates.

Develop procedural skills to combine templates

or language features to solve problems.

3. Learn problem-solving skills applicable to other formal

systems (e.g., a new programming language).

Develop a repertoire of generalized templates suitable

for adaptation to new formal systems (e.g., an efficient

sort template adapted to another programming language).

Explicitly identify generalized procedural skills for

planning, testing, and reformulating problems in a

variety of formal systems.

Note. From "The Cognitive Consequences of Programming Instruction in
Classrooms" by M.C. Linn, 1985, Educational Researcher. 14 (5), p. 16,
Washington, D.C.: American Educational Research Association. Copyright 1987 by
the American Educational Research Association. Adapted by permission.

Overview of Research Purposes

The purpose of this dissertation is to investigate the differential effects of

computer programming experience and inductive reasoning abilities on problem

www.manaraa.com

30

representations, solution plans, and achievement of students enrolled in an elementary

computer programming course. More specifically, the goals of this research are as

follows:

1. To determine whether individual differences in inductive reasoning abilities

and prior computer experience make independent contributions to the prediction of

examination scores and course grades in an introductory Pascal course (Study 1). The

results from Study 1 set the stage for a more in-depth examination of the structures and

processes involved in solving problems in computer programming.

2. To determine in greater detail the particular contributions of experience and

inductive reasoning abilities to students' categorization of programming problems

(Study 2). Do experienced programmers use generalized templates when categorizing

problems? Is degree of transfer influenced by individual differences in inductive

reasoning skills?

3. To investigate the particular contributions of experience and inductive

reasoning to the contents of students' problem schemas (Study 3).

4. To examine the contributions of experience and inductive reasoning to the

problem-solving plans and solutions they construct (Study 4).

5. To use the above findings to help build a process theory of computer

programming aptitude and achievement.

www.manaraa.com

31

CHAPTER III

STUDY 1

The purpose of this study was to determine if inductive reasoning abilities and

prior computer programming experience make significant independent contributions to

the prediction of examination scores and course grades in an introductory

programming course.

Method

Subjects

Subjects were 55 male and 27 female paid volunteers who were recruited from a

class of 263 students enrolled in an introductory Pascal course. This course included

both students with no prior computer language experience and students who had

previous experience with other computer languages, but who were beginners in

learning the Pascal computer language. Further descriptive information on this sample

is presented in Tables 3 and 4 below.

A Learner Characteristics Questionnaire was administered to all 263 student

volunteers. The 222 students who indicated that the researcher could have access to

their grades were invited to complete two additional tests at $3.50 per hour. However,

only 82 of the 222 subjects were interested in participating. These subjects completed

the Word Problem Translation Test (Mayer & Dyck, 1984) and the Advanced Raven's

Progressive Matrices Sets 1 and 2 (Raven, 1977).

www.manaraa.com

32

Instruments

Learner Characteristics Questionnaire. This survey instrument was used to gather

information about entry characteristics of the students, including access to standardized

test scores (e.g., ACT). A copy of the Learner Characteristics Questionnaire is

presented in Appendix A. Data from the Learner Characteristics Questionnaire

pertaining to ACT assessment scores were obtained from the registrar's office for

students who gave permission. Grade-Point Average (GPA) for senior high school

and college students were self-reported on the Learner Characteristics Questionnaire.

Course grades were obtained from the teaching assistants for the course.

Word Problem Translation Test (Maver & Dvck. 1984). This three-minute,

multiple-choice test consists of six word problems. The subject's task is to select the

correct equation corresponding to each problem. In a series of four studies involving

196 subjects, Mayer, Dyck, and Vilberg (1985) found that performance on the Word

Problem Translation Test correlated i =.54 with a BASIC programming language post

test. (Four correlations were computed; i = .54 is a mean correlation weighted for

number of subjects.)

Raven’s Advanced Progressive Matrices Sets 1 and 2 (Raven. 1977V This test is

designed to assess inductive reasoning ability or fluid ability (GO. The examinee is

required to solve problems presented in abstract figures and designs.

Procedure

Students enrolled in the introductory computer course in Pascal were told: "The

purpose of this research is to study how differences in previous learning and aptitude

www.manaraa.com

33

affect learning a new computer programming language. We are researching this topic

for the purpose of improving computer language instruction."

The Learner Characteristics Questionnaire was completed by 263 student

volunteers. This process took approximately ten minutes for students with no prior

computer programming experience and fifteen minutes for students with prior

computer programming experience. The experienced programmers needed an

additional five minutes to complete eleven questions concerning their programming

experience. Subjects were told: (a) that they could omit any questions, (b) that they

could discontinue their participation at any time, (c) that the data obtained would be

used only for research purposes, (d) that names would be used only to match data with

class-related findings, and (e) that course grades would not be influenced by any

findings in the questionnaire.

Eighty-two students, who gave the researcher permission to have access to their

grades, completed two additional tests. They were paid $3.50 per hour. Both the

Word Problem Translation Test and the Raven's Advanced Progressive Matrices Sets

1 and 2 were administered using standard procedures. The Word Problem Translation

test took approximately 5 minutes to administer. The Raven's Advanced Progressive

Matrices Sets 1 and 2 took approximately 50 minutes. Of the 82 subjects, seven

students were not included in Study 1 because they had prior Pascal experience.

Therefore the number of students who participated in Study 1 was 75.

How representative are the subjects in Study 1? The participants in Study 1, as a

group, appear to be more able than the population of students enrolled in the course.

The dropout rate was 44% for the class as a whole as contrasted with 29% for the

participants in Study 1. A comparison of exam scores between the subjects in Study 1

www.manaraa.com

34

and the course participants as a whole is shown in Table 2, The mean grade for each

group on all exams was C. The Study 1 students, on the average, had slightly higher

scores (4-9 points) than the course average scores.

Results and Discussion

Descriptive information about the sample is first presented, followed by a

discussion of the main dependent variable, Exam 1. Next, the intercorrelations among

dependent variables are presented, followed by the correlations among subject

variables, and then correlations between Exam 1 and the subject variables. Lastly, the

regression analyses for Exam 1 and Course Grades are presented.

In an attempt to replicate and extend the findings of the researchers previously

discussed (e.g., Butcher & Muth, 1985; Kurtz, 1980; Mayer, Dyck & Vilberg, 1985;

Peterson & Howe, 1979; Ricardo, 1983; and Sauter, 1986), measures of math,

English, reasoning, programming experience, grade-point average, student status,

college major and gender were included in this study. Additional variables

hypothesized to be related to success in introductory programming were included. For

example, responses related to motivation on the Learner Characteristics Questionnaire

(items 9, 10, and 11) were included in the analysis.

Table 3 shows the mean scores and standard deviations for the major subject

classification variables. The typical student in Study 1 had an ACT Math score of

26.37, an English score of 22.51, Progressive Matrices (inductive reasoning) score of

26.64, Word Problem Translation score of 3.58 (out of a possible 6 points), College

Grade-Point Average of B-, High School Grade-Point Average of B, reported 2.5

semesters of college math, 6.4 semesters of high school math, and was 20 years old.

www.manaraa.com

35

Since ACT Math and inductive reasoning are two of the main independent

variables in Study 1, some additional data are useful. The mean ACT Math

achievement score of the subjects in Study 1 was approximately one standard deviation

above the 1988 national mean of 17.2 points (SD = 7.8). Similarly, the inductive

reasoning skills of this group were also above the national average, mean = 21 points

(SD = 4). Although, as expected, the sample was above average in ability, scores on

both ACT Math achievement and the Progressive Matrices test are within an acceptable

range.

Table 4 shows the frequency counts for the major categorical subject classification

variables. For the variables related to computer experience, 76% of the students

Table 2. Mean Scores and Standard Deviations for Course Exams

Variable _EL Mean Standard Deviation

Exam 1 Scores
Study 1 Subjects 63 101.65 31.80

Course Participants 216 95.70 31.89

Exam 2 Scores
Study 1 Subjects 54 105.09 27.18

Course Participants 159 102.08 28.64

Final Scores
Study 1 Subjects 54 151.09 47.60

Course Participants 153 152.40 38.96

Note: Exam 1 Scores 75-109 = C, Exam 2 Scores 84-110 = C, Final 120-159 = C

www.manaraa.com

36

participating in Study 1 had more than one semester of high school BASIC

programming experience; 45% had prior top-down design experience; 75% had prior

personal computer experience. The motivation level of the group was high: 80% of

the students surveyed planned to take Advanced Pascal, 95% expectedto use

programming in their future jobs, and 80% indicated that the Introductory Course in

Pascal was a high priority for them. English was the native language for 87% of the

Table 3. Mean Scores and Standard Deviations for Relevant Independent Variables

Variable

ACT Math

ACT Verbal

Inductive Reasoning
(Advanced Raven
Progressive Matrices Set 2)

Word Problem Translation
Test (6=highest possible score)

College Grade-Point Average
(Self-reported)

High School Grade-Point Average
(Self-reported)

No. of Semesters College
Math Courses

No. o f Semesters High School
Math Courses

Age 69

N Mean Standard Deviation

63 26.37 4.08

63 22.51 4.52

75 26.64 3.67

74 3.58 1.30

60 2.99 0.57

68 3.32 0.44

56 2.50 2.31

72 6.40 1.94

20.62 5.54

www.manaraa.com

37

students. Two-thirds of the students were men. There were more freshmen than any

other category, with approximately the same number of sophomores, juniors, and

seniors.

Data from the Learner Characteristics Questionnaire pertaining to prior computer

experience was used to determine the computer experience group. The computer

experience groups were defined as follows:

Group 1 = Novice—prior computer programming experience or only 1 semester

of high school BASIC or COBOL.

Group 2 = Advanced Novice-tw o semesters of high school computer

programming or one semester of college-level programming.

Group 3 = Intermediate—two semesters of college-level programming (two

different languages) or three or four semesters of high school programming in one

language plus additional programming experience.

Group 4 = Advanced Intermediate—two to six semesters of college-level

programming in at least one language. Most people had studied two or three

languages. Many had work experience.

An independent rater (an experienced programmer) chose the subjects for the

intermediate and advanced intermediate groups. For these intermediate groups, the

rater was told to give more weight to languages related to Pascal (e.g., FORTRAN)

than to languages unrelated to Pascal (e.g., LISP).

Of the 82 subjects, seven students were not included in Study 1 because they

had prior Pascal experience. The remaining 75 students were divided into four

groups based on level of computer experience as defined above.

Table 5 shows the number of subjects in each experience group at the time the

www.manaraa.com

38

Table 4. Frequency Counts and Percents for Categorical Subject Variables

Variable Frequency Percent

Prior Computer Programming
Experience

Novice 18 24.0
Advanced Novice 24 32.0
Intermediate 20 26.7
Advanced Intermediate 13 17.3

Prior Top-Down Design Experience
Yes 28 37.3
No 33 44.0
No Response 14 18.7

Prior Personal Computer Use
Never 18 24.0
Sometimes 37 49.3
Frequently 20 26.7

Prior Word Processing Experience
Yes 53 70.7
No 22 29.3

Plan To Take Advanced Pascal
Yes 59 78.7
No 15 20.0
No Response 1 1.3

Future Job Using Programming
Yes 71 95.0
No 4 5.0

Pascal Course — High Priority
Low 0
Medium 15 20.0
High 60 80.0

English Native Language
Yes
No

65
10

86.7
13.3

www.manaraa.com

39

Table 4—continued

Sex
Female
Male

25
50

34.0
66.0

Status
Freshman
Sophomore
Junior
Senior
Special Students

27
17
15
14
2

36.0
22.7
20.0
18.7
2.7

study was administered and the number of subjects who completed Exam 1. A few

subjects in each experience category dropped the course prior to Exam 1. That is, of

the 75 students participating in this study, 63 took Exam 1.

Analysis of the Dropout Group

Of the 75 subjects who participated in Study 1,21 subjects or 28% dropped the

course. To determine whether any of the predictive measures could be used to explain

this, T-tests for independent groups were performed for differences between the

means on all variables in the drop and non-drop groups.

Significant differences were found for only two variables. The drop group had

significantly fewer college math courses (T = 7.49, p> = 0.0001). In addition,

completing the Pascal course was a higher priority for the drop group than for the

non-drop group CE = 2.88, p> = 0 .01). So it cannot be asserted that the drops were

not interested in completing the course. They were very interested in pursuing

computer science when they filled out the Learner Characteristics Questionnaire at the

beginning of the semester.

www.manaraa.com

40

Table 5. Number of Subjects in Each Group Prior to Exam 1 and Number Who
Completed Exam 1

Experience Group No. Prior Percent No. Completed Percent
to Exam 1 o f Total Exam 1 of Total

1. Novice 18 24 14 22

2. Advanced Novice 24 32 21 33

3. Intermediate 20 26.7 17 27

4. Advanced Intermediate 12. 17.3 H 18

75 63

Since the dependent variable Exam 1 was the main outcome variable in the study,

a one-way analysis of variance test was performed on the differences between the

drops and non-drops on Exam 1. As expected, the non-drops performed significantly

better on Exam 1 than the drops (T = 24.46, J2> = .0001).

Analysis o f College Maior

Table 6 shows a breakdown of college major for the subjects who took Exam 1.

The Pascal course was required for the 29 computer science majors. Since college

major is an unstable variable during the first year or two of college, no additional

analyses were made.

Main Dependent Variable: Exam 1

Exam 1 is emphasized here because it is the main dependent variable, not only for

Study 1 but also for Studies 2 through 4. The period between enrollment in the

www.manaraa.com

41

introductory computer programming course in Pascal and Exam 1 is of particular

importance because this study was investigating the early stages of transfer from prior

computer programming experience to learning an additional programming language.

The role of inductive reasoning skills during this stage of the semester was also of

interest. As previously mentioned, 46% of the students initially enrolled in the course

dropped out either before Exam 1 or just after they received their Exam 1 results.

A better understanding of the trainable aspects of successful performance during

the early stages of the course could lead to changes in the course or in assistance

offered to students such that more students might successfully complete the course.

The purpose of Study 1 was to estimate the independent contributions of

inductive reasoning and prior computer programming experience to the prediction of

scores on the first examination in the course. Study 1 thus provides the context for

understanding the results from Studies 2 through 4. Correlation data for Exam 2

Scores, Final Exam Scores and Course Grades are also presented. The main focus of

discussion, however, in Study 1 is on Exam 1.

Intercorrelations Among Dependent Variables

The intercorrelations among the dependent variables are shown in Table 7. In

part, the magnitude of the correlation between grade and each exam can be explained

by the part-whole relationship (i.e., grade includes each exam score).

Intercorrelations Among Independent Variables

The intercorrelations among subject variables are reported in Table 8. In

preparation for the regression study, these correlations were examined for collinearity.

Strong correlations were not found between the main subject classification variables

www.manaraa.com

Table 6. The College Majors of Subjects Taking Exam 1

Major N Percent of Total Group

Computer Science 29 38.7

Math 5 6.7

Social Science 2 2.7

Business 9 12.0

Ait 1 1.3

Health Science 2 2.7

Other 14 18.7

No Response 13 17.3

Table 7. Intercorrelations for Course Exams and Grade

EXAM 1

EXAM 1 EXAM 2 FINAL GRADE

EXAM2 .70

FINAL .62 .64

GRADE .66 .64 .81

Note. N = 54. Exam 1 was administered after 5 weeks, Exam 2 after
2 weeks, and the Final Exam after 1$ weeks.

www.manaraa.com

43

that were later used as independent variables in the regression analysis.

The correlation and regression analyses related to the first exam are of particular

interest and will be presented first and discussed. This will be followed by a briefer

presentation and discussion of the analyses on Course Grade.

Correlations: Exam 1 and Independent Variables

Maior Variables and Exam 1. Previous research findings focused on predicting

final examination scores and final grades, not on earlier examination scores in the

semester. As expected, many of the variables used in previous studies were found to

be correlated with first examination scores in this study (i.e., math achievement, word

problem translation, inductive reasoning, computer experience and grade-point

average.)

Table 9 reports correlations between all subject classification variables and the

four dependent variables. For the correlations between Exam 1 and the independent

variables, see column 1. The major variables include ACT English, ACT Math,

Progressive Matrices (inductive reasoning), programming experience group, Word

Problem Translation Test, grade-point average, number of semesters of college math,

and personal computer use. Correlations between Exam 1 and these variables are

significant at least at the .05 level, except ACT Verbal. ACT Verbal was included for

comparison purposes even though the correlation was small.

Inductive reasoning (Progressive Matrices) and computer programming

experience were the two major subject variables of interest in this research. A

comparison between these subject variables and dependent variables is shown in

Figure 3.

www.manaraa.com

44

Table 8. Correlations Among All Subject Variables

1 2 3 4 S 6 7 8 9

1 ACT
Verbal

2 ACT .49
Math (63)

3 Progressive .21 .37
Matrices (63) (63)

4 Programming -.02 -.03 .11
Experience (63) (63) (75)

5 Word Problem .32 .39 .35 -.12
Translation (63) (63) (74) (74)

6 Grade Point .45 .46 .09 .03 .18
Average (51) (51) (60) (60) (59)

7 No. College -.01 .11 .00 .25 .16 .01
Math Courses (47) (47) (56) (56) (55) (53)

8 Personal -.16 -.12 .24 .51 -.06 -.19 -.05
Computer Usage (63) (63) (75) (75) (74) (60) (56)

9 High School .33 .28 -.02 .07 -.09 .55 .14 -.09
Grade Point (63) (63) (68) (68) (68) (55) (51) (68)

10 No. High School -.10 .20 .17 -.11 .09 .19 .06 -.03 .15
Math Courses (62) (62) (72) (72) (71) (58) (54) (72) (67)

11 English Native .24 .29 .19 -.05 .17 -.14 -.13 .18 .1
Language3 (63) (63) (75) (75) (74) (60) (56) (75) (68)

12 Course High .16 -.01 -.15 -.10 -.15 -.06 -.27 -.10 -.10
Priority (63) (63) (75) (75) (74) (60) (560 (75) (68)

13 Advanced -.20 -.35 .11 .21 -.13 -.14 -.32 .30 -.29
Pascal Plans3 (62) (74) (74) (73) (59) (55) (74) (67) (72)

14 Future Job using -.12 -.26 -.27 .09 -.17 -.22 -.09 .09 -.14
Programming3 (63) (63) (75) (75) (75) (60) (56) (75) (68)

15 Prior Word -.12 -.02 .20 .38 .21 .07 .26 .48 -.12
Processing3 (63) (63) (75) (75) (74) (60) (56) (75) (68)

16 Prior Top- -.08 .16 .08 .08 .02 .32 -.25 .17 .35
down Design3 (57) (57) (69) (69) (68) (54) (51) (69) (62)

17 Age .09 -.09 .01 -.05 .04 -.26 .22 -.16 -.31
u (60) (60) (71) (71) (70) (58) (53) (71) (64)

18 Sexb -.03 -.10 -.16 -.24 .20 -.04 -.08 -.31 .02
(53) (53) (61) (61) (60) (51) (45) (61) (56)

www.manaraa.com

45

Table 8 -continued

10 11 12 13 14 IS 16

10 No. High School
Math Courses

11 English Native -.10
Language3 (72)

12 Course High -.01 .14
Priority (72) (75)

13 Advanced .14 -.10 .09
Pascal Plans3 (74) (74) (74)

14 Future Job using -.14 .08 .06 .03
Programming3 (72) (75) (75) (74)

IS Prior Word -.02 .18 -.25 -.03 -.02
Processing3 (72) (75) (75) (74) (75)

16 Prior Top- -.27 .13 .11 -.07 -.02 .32
down Design3 (58) (61) (61) (60) (61) (61)

17 Age -.17 .06 .09 .01 .04 .00 .18

18 Sexb
(66) (69) (69) (68) (69) (69) (55)
-.12 .00 -.08 .14 -.05 .08 .02
(68) (71) (71) (70) (71) (71) (62]

17

-.02
(65)

Note. Sample sizes are in parentheses.
a Coded N o-0, Y es=l.
b Coded Female=0, M ale=l.

Level of inductive reasoning (Gf) was the stronger predictor of achievement for

the first two-thirds of the course. By the final exam, inductive reasoning was no

longer a significant correlate for predicting computer programming achievement,

whereas prior computer programming was significant. The contribution of prior

experience was similar across all three exams. Neither inductive reasoning nor

computer programming experience correlated significantly with course grade.

Consistent with prior research, college grade-point average (self reported) was a

www.manaraa.com

46

Table 9 . Correlations Between Dependent and Subject Variables

ACT Verbal

ACT Math

Progressive Matrices

Programming
Experience Group

Word Problem
Translation

Grade-Point
Average

No. College
Math Courses

Personal Computer
Usage

High School Grade-
Point Average

No. High School
Math Courses

English Native
Languagea

Pascal Course A Priority
This Semester

Advanced Pascal Plansa

Future Job using
Programming3

EXAM 1 EXAM 2

.24 .37
(52) (46)

.39 .48
(52) (46)

.39 .45
(63) (54)

.30 .25
(63) (54)

.38 .43
(62) (53)

.28 .43
(52) (45)

.29 .25
(48) (40)

.27 .10
(63) (54)

.08 .14
(57) (50)

.19 .20
(60) (51)

.25 .06
(63) (54)

-.21 -.18
(63) (54)

.00 -.21
(63) (54)

.00 -.24
(63) (54)

FINAL GRADE

.16 .19
(46) (46)

.20 .22
(46) (46)

.10 .04
(54) (54)

.31 .15
(54) (54)

.12 .20
(53) (53)

.20 .42
(45) (45)

.18 .20
(40) (40)

.12 -.04
(54) (54)

.12 .13
(50) (50)

.29 .26
(51) (51)

.06 -.12
(54) (54)

.00 -.03
(54) (54)

-.16 -.26
(54) (54)

-.09 -.07
(54) (54)

www.manaraa.com

47

Table 9--continued

EXAM 1 EXAM 2 FINAL GRADE

Prior Word Processinga .35 .18 .10 .09
(63) (54) (54) (54)

Prior Top-down
Design*

.19 .11 -.04 -.15
(54) (47) (47) (47)

Age .17 .07 .09 .10
(58) (50) (50) (50)

Sexb .18 .17 .05 .01
(61) (52) (52) (52)

Note. Sample sizes are in parentheses.
a Coded No=0, Y es=l.
6 Coded Female=0, M ale=l.

good predictor of course grades. This finding is misleading, however, because 27 of

the 75 students in Study 1 were first-semester freshmen. However, for students in

this study who had college experience, GPA was a good predictor of introductory

computer programming achievement. It is also interesting to note that college

grade-point average was the only variable that correlated with course grade at the .05

or below significance level (p<.004, n = 45).

Other Variables and Exam 1. Correlations between Exam 1 and the remaining

variables in this study are also reported in Table 9. Prior word processing experience

was found to be correlated with Exam 1 (r = .35, £ < .005). However, since it was

measured imprecisely in this study and since it was not reported as strong correlate in

previous research, it was not included in the subsequent regression analysis. Further

www.manaraa.com

Figure 3. A Comparison of the Correlations Between the Dependent Variables
and Inductive Reasoning and Computer Programming Experience

.50 +
kxJ = Inductive Reasoning

Skills
| | = Programming

Experience
.40-

. 30-

. 2 0 - .

Exam 1 Exam 2 Final Grade
(N=63) (N=54) (N=54) (N=54)

Note: Dots indicate at least the.p<.05 level of significance.

www.manaraa.com

49

research is needed to ascertain the relative importance of prior experience with a word

processor for programming course achievement. It may be that familiarity with the

computer system used in the course is of particular importance and not word

processing per se.

The 65 students who responded affirmatively to the question, "Is English your

native language?", tended to do better on Exam 1 than the ten students for whom

English is not their native tongue. This variable was also not included in the

subsequent regression analysis for the same reasons as mentioned above for the word

processing variable.

Small or low correlations with Exam 1 were found for high school grade-point

average, number of high school math courses, age, sex, and the motivation-related

variables (Pascal Course A Priority This Semester, Plans To Take Advanced Pascal

and Future Job In Programming). It is often the case that correlations between

variables decline as the time interval between them increases. This may help explain

the small correlations between Exam 1 and high school grade-point average, number

of high school math courses, and motivational variables. Further, all of these

variables are measured imprecisely here.

In addition, prior experience with "top-down design”, as reflected in response to

Question 16 on the Learner Characteristics Questionnaire was not an important Exam 1

correlate. This later finding is not surprising in that the novices were just beginning to

learn about top-down design. According to anecdotal information from several

intermediate level programmers in the study, the programming problems presented

early in the course were too simple to require layers of decomposition and, hence, they

did not spontaneously use a structured or top-down approach to the problems, even

www.manaraa.com

50

though they were encouraged to do so by their instructor.

Based on an examination of the correlation matrix and previous research, three

independent variables were chosen for the regression analyses: Progressive Matrices

(inductive reasoning), programming experience group, and ACT Math.

Regression Analyses

For Study 1, a model was created predicting exam and course grade achievement.

The model contained two components: inductive reasoning and computer-related

knowledge base. Computer programming experience and ACT Math comprised the

knowledge base component. Figure 4 is a visual representation of the model.

The Statistical Analysis System (SAS) was used for the multiple regression

analysis. The regression procedure chosen was General Linear Models (GLM)

procedure. This program provides statistics on the predictive power o f the model as

well as the individual contributions of each independent variable to the model. More

specifically, the GLM procedure gives the sum of squares (Type III) that would be

obtained for each variable if it were entered last into the model. That is, the effect of

each variable is evaluated after all other factors have been accounted for. For purposes

of this study, only the regression analyses for Exam 1 and Course Grades are

discussed. The summaries for the regression analyses for Exam 2 and Final Exam are

presented in Appendix B.

Regression Analysis for Exam 1. Scores for Progressive Matrices (inductive

reasoning), Computer Programming Experience, and ACT Math were regressed on

Exam 1. The results from the regression analysis indicated that 31% of the variation in

www.manaraa.com

51

Figure 4. Model for Predicting Exam and Course Grade Success

Inductive
Reasoning

EXAM 1 SCORES

Two Major Components
of Knowledge Base

Computer-
Programming
Experience

ACT
Math

www.manaraa.com

52

Figure 5. Contributions of Each Independent Variable in the Model for Exam 1
Achievement

Inductive
Reasoning 10.5%

EXAM 1 SCORES

Two Major Components
of Knowledge Base

Computer-
Programming
Experience

11.2%

9.6%

ACT
Math

www.manaraa.com

53

Exam 1 could be accounted for by the linear combination of the three independent

variables. Of the 63 people who took Exam 1, eleven did not grant permission to use

their ACT Math scores. Consequently, the number of subjects for the Exam 1

regression study was reduced to 52.

All three variables in the model made significant independent contributions to the

prediction of Exam 1 achievement. Figure 5 shows the contributions of each variable

to the model. The percent of total variation contributed by each variable was similar,

ranging from .31 to .36. Table 10 gives more statistical information about the

contributions of each variable in the model for predicting Exam 1 scores.

Table 10. Contributions of Each Variable in the Model for Predicting Exam 1 Scores

Variable 8 Type III SS F Value PR>F

Inductive Reasoning 2.21 3078.76 5.05 .03
Programming Experience 8.25 3244.68 5.32 .03
ACT Math 1.91 2807.43 4.60 .04
Intercept -27.25

Note. N = 52.

Regression Analysis for Course Grades. Although Exam 1 is the focus for this

dissertation, a regression analyis was performed for course grades as well. The

results were not surprising considering the low correlations between each independent

variable and Course Grade (Table 9). It is important to note that Course Grades

include Exam 1, Exam 2, Final Exam, nine quiz grades, and ten homework grades.

www.manaraa.com

Table 11 gives a summary of the regression analysis for Course Grades.

Table 11. Contributions of Each Variable in the Model for Predicting Course Grades

Variable 8 Type M S S F Value PR>F

Inductive Reasoning
Programming Experience

-.02
.08
.07
.95

.239

.286
3.5

.16
.19

2.31

.6929

.6657

.1358ACT Math
Intercept

Note. N = 46.

Nine of the 63 people who took Exam 1 dropped the course following Exam 1.

Of the 54 subjects receiving course grades, eight people did not grant permission to

use their ACT Math scores in this study. Therefore, the number participating in the

regression study for Course Grades was reduced to 46.

Only 6% of the variance in Course Grade can be said to be attributed to the

model. None of the independent variables made significant contributions to the model.

Table 11 gives details on the contributions of each variable in the model for predicting

Course Grades.

The summaries for the regression analyses for Exam 2 and Final Exam are

presented in Appendix B.

Summary

In summary, the goal of the first study was to determine whether individual

differences in inductive reasoning abilities, prior computer programming experience,

www.manaraa.com

55

and ACT Math make independent contributions to the prediction of examination

scores and Course Grades in an introductory Pascal course. Results indicated that all

three variables made significant independent contributions to the prediction of Exam 1

achievement. The model as a whole accounted for 31% of the variance in Exam 1

scores. In contrast, none of the three variables made independent contibutions to the

prediction of Course Grades, and together only accounted for 6% of the variance in

Course Grades.

Problem representation is explored in Study 2, More specifically, Study 2

examines in greater detail the particular contributions of prior programming experience

and inductive reasoning abilities to students’ categorization of programming problems

prior to Exam 1.

www.manaraa.com

56

CHAPTER IV

STUDY 2

Study 1 indicated that prior computer programming and inductive reasoning skills

made independent contributions to Exam 1 achievement. In Study 2, the nature of this

contribution is examined in the context of how students represent problems in

computer programming. As previously discussed, a problem representation is

constructed using the knowledge for a particular type of problem (Chi, Feltovich, &

Glaser, 1981). Figure 1 (see Chapter 1) illustrates this process. Chi and her

colleagues hypothesized that differences between novices and experts may be related to

"poorly formed, qualitatively different, or nonexistent categories in the novice

representation" (p. 122). Other researchers (Holland, Holyoak, Nisbett, & Thagard,

1986) assert that induction plays a vital role in generating a problem representation.

This study examines the roles of both prior computer programming knowledge and

inductive reasoning skills in generating a problem representation.

Overview of Research Design

The designs of Studies 2-4 closely resemble the Chi, Feltovich, and Glaser

(1981) research designs. The main differences are (a) computer science, not physics,

is the domain of interest, (b) more subjects are used in this study, and (c) students do

not just state their basic approaches but actually solve programming problems. The

methodologies are also consistent with suggestions from Linn (1985) and

Shneiderman & Mayer (1979) on measuring specific cognitive accomplishments from

www.manaraa.com

57

learning programming. In Studies 2-4, the knowledge dimension (novice versus

experienced computer programmers) is crossed with inductive reasoning dimension

(Average Q f versus High G fi.

Research Questions: Study 2

1. Do the novice and experienced programmers, who are all learning a new

language, have different organizational categories for their new knowledge?

2. Do individual differences in inductive reasoning/fluid ability (Gfi influence

categorization?

Method

Subjects

The 82 subjects from Study 1 participated in this study. Since Study 2 did not

involve any programming, the seven subjects with some prior Pascal experience who

were excluded from Study 1 were included in this study. They were paid $3.50 per

hour. The data were collected during the first few weeks of the same introductory

computer language course in Pascal described in Study 1. The subjects ranged from

novices who had no prior programming experience to advanced intermediate

programmers who had both academic and work experience in one or two

programming languages. Although all 84 subjects completed the categorization task,

the middle range of subjects, the advanced novice and intermediate groups, were

removed from the sample because of time and financial constraints. For a more

detailed description of the experience groups, see Chapter 3. Data for the advanced

novice and intermediate groups are available upon request from the author. More

www.manaraa.com

58

specifically, the subjects for both the quantitative and qualitative analyses were 17

novice programmers (8 with high inductive reasoning abilities, 9 with average

inductive reasoning abilities) and 16 of the most experienced programmers (11 with

high inductive reasoning, 5 with average inductive reasoning). The experienced

programmers will be called "intermediate level" in this study. Subjects who scored 25

or below on the Raven’s Advanced Progressive Matrices were labeled average

inductive reasoners, whereas subjects who scored 26 or above were labeled high

inductive reasoners. According to the norms manual for the 1962 version of the

Raven's Advanced Progressive Matrices, the mean score for university students is 21

(S.D.=4) (Raven, Court, & Raven, 1977). Thus, the subjects labeled high inductive

reasoning ability scored more than one standard deviation above the mean for

university students on this test.

Materials

A set o f 30 typical introductory computer programming problems was constructed

in which surface features (e.g., letters, numbers, money) were roughly crossed with

secondary features involved in solution strategies (e.g., sorts, single or multiple loops,

state machine). For example, the following problem was categorized as a sort

problem:

A certain Swiss Bank has ten customers, each with a unique account
number. Write a program to read in ten pairs of account numbers and
balances. Then your program should print them out so that an account with
a larger balance is always listed before any of the accounts with smaller
balances.

This task, inspired by the sorting task in the Chi, Feltovich and Glaser (1981) study,

was created by an individual with a B.S. in Computer Science and the author o f this

www.manaraa.com

59

study. See Appendix C for the 30 problems organized by both surface and secondary

features.

Procedure

Subjects were asked to sort the computer-programming problems into five groups

based on similarities of solution. They were given twenty-five minutes for the sorting

aspect of the task and ten minutes to complete the answer sheet. They were then asked

to label each problem group and also to give a reason for choosing the label.

Appendix D contains the answer sheet, including detailed instructions.

Results and Discussion

The quantitative analyses of the sorting task will be presented first, including both

multidimensional scaling and cluster analyses. This will be followed by a qualitative

analysis of the types o f category labels generated by novice and experienced

programmers of average and high inductive reasoning abilities. Chapter four

concludes with an analyis of the number of natural language and computer language

category labels generated by each group.

Quantitative Analysis of Sorting Task Responses

Hypotheses-

1. Novices will generate categories based on superficial features in the problem

statements.

2. Advanced intermediates will produce categories based on problem types (i.e.,

secondary features in the problem statements).

3. No specific hypotheses were made concerning inductive reasoning abilities.

www.manaraa.com

60

A 30 x 30 matrix was created for each of the four groups by counting the

frequency with which each of the 30 problems was paired with every other problem.

The resulting four proximity matrices were used for both a multidimensional scaling

analysis and a cluster analysis. These analyses were performed to determine the

degree to which subjects in each group agreed that certain problems belonged to the

same group.

The multidimensional scaling procedure called ALSCAL (SAS Institute, Inc.,

1986) was used to create spatial representations of the proximity data in two through

five dimensions. The untie option for ordinal data was chosen. Ties existing in the

data were untied in such a way that goodness-of-fit was optimized. The similar option

was used indicating that small numbers mean little similarity, whereas large numbers

mean great similarity.

The spatial solutions for dimensions one through five were examined as well as

the stress values for measuring goodness of fit. Since the two-dimensional solutions

for each group were more interpretable and had relatively low stress values, they were

used for this exploratory study. Table 12 gives stress values and the r-squares for all

five solutions for each group.

A hierarchical cluster analysis (SAS Institute, Inc., 1985) was performed using a

distance matrix in which larger numbers indicated greater dissimilarity between two

problem statements. The original proximity matrices were therefore modified to

accomodate this feature. In the SAS (1985) cluster procedure, each observation

begins in a cluster by itself. Then the two closest clusters are merged to form a new

cluster replacing the two old clusters. This process is repeated until only one cluster is

left.

www.manaraa.com

61

Both the average method and Ward's minimum variance method were used.

Ward's method was chosen because it was more interpretable when used in

conjunction with the multidimensional scaling plots. For the Ward's method, the

distance between two clusters is the sum of squares between the two clusters summed

over all variables. Clusters with few observations tend to be joined with the Ward's

method. Also this method is biased toward producing clusters with roughly the same

number of observations. In the context of this study, an observation or variable refers

to paired problem statements. (See Appendix C for the list of problem statements used

in this task.)

Table 12. Stress Values and Squared Correlations for the Solution Dimensions

Number of
Dimensions

5 Stress
RSQ

4 Stress
RSQ

3 Stress
RSQ

2 Stress
RSQ

1 Stress
RSQ

Novice

Inductive Reasoning
Average High

.04 .03

.98 .99

.06 .05

.97 .98

.07 .06

.97 .98

.11 .12

.94 .93

.27 .19

.78 .90

Intermediate

Inductive Reasoning
Average High

.01 .05
1.00 .97

.03 .07
1.00 .95

.05 .10

.98 .93

.10 .16

.96 .87

.18 .29

.92 .75

www.manaraa.com

62

For the purposes of this exploratory study, the numerical details from the cluster

analysis are less important than clearly identified clusters or groups as seen in the

cluster tree plots. These clearly identified clusters were superimposed on the scaling

representation for each group. The lack of ideal fit between the multidimensional

scaling plots and the cluster analysis capitalizes on chance and, therefore, adds an

element of uncertainty in the analysis.

Categorization Behavior: Novices Average Gf. The results for the

two-dimensional solution for the novices of average Qf are shown in Figure 6. All

clusters appear to be categories chosen on the basis of primary or secondary surface

features in the problem statements. The clusters appear to represent: (a) money

problems (E, O, U, 5, K); (b) geometry problems (1 ,7 , Q, R, S); (c) math problems

(4, 6, J, L, N); (d) uninterpretable—three problems with numeric input with one

uncertain (C, F, P, T); (e) alphabet or output oriented problems (8 ,9 , A, B); and (f)

character or word input and/or character or word output problems (2, 3, D, G, H, I,

M). Categorization according to surface features is typical novice behavior as reported

by Chi, Feltovich, and Glaser (1981) and other researchers in a wide range of fields.

Categorization Behavior: Novices High Gf. The results for the two-dimensional

solution for the novices of high inductive reasoning appear in Figure 7. From left to

right, the clusters appear to represent: (a) read in characters or text, perform

transformation and print out (2, G, M); (b) alphabet and/or outcome oriented

problems (8,9, A, B); (c) single and multiple loops (3, D, H); (d) outcome oriented

or sort problems (K, R); (e) decision oriented problems (C, I, P, T); (f) money

www.manaraa.com

Z UOISU3UITQ

www.manaraa.com

Fi
gu

re

7.
Tw

o-
di

m
en

si
on

al
 S

ol
ut

io
n

for
 N

ov
ic

es
 o

f
Hi

gh

In
du

ct
iv

e
R

ea
so

ni
ng

i n
c-i

\o

00

O
c-i

n

in
d

o
o

in
d

in

q
r-i

in in
d

o
d

in
d

in q
ni

in
ni

1 UOISU3UIIQ

D
im

en
sio

n
1

www.manaraa.com

65

problems (5, E, O, U); (g) geometry problems (1, Q, S); and (h) math problems (4,

6, 7, F, J, L, N).

Like the novices o f average Gf, these subjects used surface features for

identifying some of their categories (geometry, money, and math). However, they

transcended the boundaries o f the surface features in several instances. For example,

the novices of average G f identified problem R as a geomety problem and problem K

as a money problem. Problem K is the Swiss bank problem previously mentioned as

a problem with money-related surface features and a sort solution strategy. Problem R

is also a sort problem. The novices of high G f paired problems R and K. In addition

to using sorts as a solution strategy, problems R and K require precise output

specifications. This was a design flaw in the task so it is difficult to ascertain if the

novice subjects had read about sons and recognized the conditions for using them or if

they categorized the two problems by output specifications. In either case, the

categorization behavior of the novices of high Gf appears to be on a deeper level.

Another case of differences between novices of average Gf and novices of high

Gf can be seen by examining categorization behavior for problems 3, D, and H. The

novices of average Gf clustered these problems with several other problems that had

character input or character output, whereas novices of high Qf created a separate

category for 3, D, and H. This category contains problems which use either loops or

multiple loops for solving the problem.

Lastly, two dimensions appear to capture most of the data for the novice group

with average inductive reasoning skills. The appropriate label for dimension one is not

obvious. However, dimension two appears to represent categorization by numeric

problem features. Problems in the upper half of the plot were mainly sorted into

www.manaraa.com

66

categories based on numeric problem features (money, geometry, math, three numeric

input problems plus one uncertain) whereas problems in the lower half of the plot were

sorted based on letter features (alphabet, character, or word). In contrast, one

dimension seems to fit better for the novices with high inductive reasoning skills. This

dimension appears to represent categorization by problem features. The clusters on the

right half of the plot are categories with common surface features (i.e., money,

geometry, and math). The clusters on the left side of the plot are categories which

reflect more inferred knowledge or at least more processing of the problem statement

beyond superficial features (i.e., decision oriented, single or multiple loops, outcome

oriented, and read in characters or text, perform transformation and print out). (The

stress level, however, is better for two dimensions. Table 12 gives the stress levels

for both dimensions.)

Researchers such as deJong and Ferguson-Hessler (1986) have reported that

good novice problem solvers have their knowledge arranged around problem types

(deep features) in the problem statement to a greater degree than poor novice problem

solvers. These analyses lend some support to this hypothesis, although the distinction

appears not to be as clear-cut as the deJong and Ferguson-Hessler (1986) findings.

Novice problem solvers who were here classified as high Q f also classified problems

primarily by the primary or secondary features in the problem statements. The fact that

they organized some of their knowledge around problem types is striking considering

they only had a few weeks of programming experience. In contrast, the subjects in the

study by deJong and Ferguson-Hessler had a semester of college-level physics prior to

participating in the problem-solving task in their study.

www.manaraa.com

67

Categorization Behavior; Intermediate Level Programmers Average Gf. The

results for the two-dimensional solution for the experienced programmers of average

Gf are shown in Figure 8. From left to right the clusters appear to represent: (a)

Rearrange or transform characters or Words (2, 3, D, G, I); (b) Uninterpretable—five

sons with two uncertain (8, 9, A, B, H, K, M); (c) Interest Problems (E, U);

(d) Math Problems (4, F, J, L, N, O, T); (e) Geometry (1, R, 7, Q, S); and

(f) Uninterpretable-two decision oriented of boolean data type with two uncertain (5,

6, C, P). Overall, the results for the intermediates of average G f were more difficult to

interpret than the results of the other three groups.

Categorization Behavior: Intermediate Level Programmers High Gf. The results

for the two-dimensional solution for the intermediates o f high G f are shown in Figure

9. From left to right, the clusters appear to represent: (a) Rearranging or transforming

characters or words (2, 3, D, G, H, I, M); (b) Sorts (Large Algorithm) (8, 9, A, B,

K, R); (c) Money Related (5, E, O, U); (d) Math Calculations (4, 6, F, J, L, N, T);

(e) Geometry (1,7, Q, S); and (f) Decision oriented of boolean data type (C, P).

It is surprising to see how many superficial level categories are created by both

computer programming experience groups. There is, however, some additional

discrimination. For example, the intermediates of average Gf have a money-related

category with only two members. Both problems are interest problems. Perhaps even

experts would categorize problems together that require more application. Further

research is needed. To create a sort algorithm category, the intermediate programmers

of high Gf probed beneath the surface level of geometry, money, letters, etc., to a

common solution strategy for six problems. Categorization by solution plan features

www.manaraa.com

Fi
gu

re

8.
Tw

o-
di

m
en

si
on

al
 S

ol
ut

io
n

for
 I

nt
er

m
ed

ia
te

s
of

A
ve

ra
ge

In

du
ct

iv
e

R
ea

so
ni

ng

68

Z U01SU3UIIQ

D
im

en
sio

n
1

www.manaraa.com

Fi
gu

re

9.
Tw

o-
di

m
en

si
on

al
 S

ol
ut

io
n

for

In
te

rm
ed

ia
te

s
of

Hi
gh

In

du
ct

iv
e

R
ea

so
ni

ng

69

in
c-i

o

oo

q
ci

>n

>n
d

o
o

in
d

m

o
c-i

o
<s

«n in
d

o
d

>n
d

m q
ni

m
rs

Z UOISU3UIIQ

D
im

en
sio

n
1

www.manaraa.com

70

is typical behavior for experts in a variety of fields.

It is interesting to note that none of the groups created "reduction" or "state

machine" categories. These categories were built into the underlying structure of the

task. The reduction and state machine categories were expert-generated categories

discovered during the task development phase prior to conducting this study. All other

categories in the underlying model (Money, Geometry, Numbers, Letters/Words,

etc.) were represented in the data. For a review of the underlying structure of the task,

refer to Appendix C. Next, the qualitative analysis of the same sorting task will be

presented.

Qualitative Analysis of Categorization Task Responses

Hypotheses.

1. Novices will generate more natural language categories than intermediate level

programmers, with novices of average G f producing the greatest number of natural

language categories.

2. Intermediate level programmers will produce more computer language

categories than novices, with intermediate subjects of high Gf generating the greatest

number of computer categories.

For the quantitative analysis presented, the raw data were the number of times

each problem was associated with the other problems. For the qualitative analysis

reported in this section, the raw data were the five labels or names and the brief

description given by each subject for all chosen categories. For example, problem

numbers 76,96, and 108 were put into a category labeled "interest." The subject

indicated that "each of these requires some sort of comparison using interest."

www.manaraa.com

71

Once again, the subjects for this analysis were: 17 novices (8 of high inductive

reasoning, 9 of average analogical reasoning), and 16 intermediates (11 of high

inductive reasoning, 5 of average inductive reasoning). (Data for all groups for this

analysis, however, appears in Appendix E, Table 30.)

An independent rater who was an experienced programmer scored each category

label for all subjects. The rater was unaware of data on the personal profiles of each

subject. The rater consolidated all the categories of problem statements generated by

the subjects into twenty-one categories presented in Table 13. These categories were

in turn collapsed into the four superordinate categories shown in Table 13. The four

superordinate categories were: (1) Natural language-problem features, (2) Natural

language-problem process, (3) Computer language-problem features, and (4)

Computer language-problem process. Table 13 shows how each of the twenty

categories for problem labels were assigned to these superordinate categories. The

first natural language category included problems grouped by labels which emphasized

surface features such as money, geometry, letters, numbers, categories referring to

editing or organizing, and input oriented statements. The second natural-language

category, problem process, included labels which seem to require more thinking about

how problems might be solved yet do not explicitly mention programming-related

constructs. The categories include simple math, complex math, outcome oriented and

decision makers.

The program knowledge categories also were divided into problem features and

problem process. The problem features categories were data types (except Boolean)

and Boolean. The problem process categories included operations with data types,

output oriented, data structures, data structures plus manipulation, loops, nested

www.manaraa.com

72

loops, small algorithms, large algorithms, outline approach, procedures, and

complicated programs.

A no credit category was included (a) for irrelevant responses, (b) for two

categories with same name and numbers, and (c) for associations to associations.

Table 13. Rater Consolidated Categories

N atural Language C om puter Program m ing

Problem Features Problem Process

1. Surface Features 10. Operation with Data Types
2. Organizing/Editing 11. Output Oriented
3. Input Oriented 12. Data Structures

13. Data Structures Plus
Problem Process Manipulation

14. Loop
4. Simple Math 15. Nested Loops
5. Complex Math 16. Small Algorithm
6. Outcome Oriented 17. Large Algorithm
7. Decision Makers 18. Outline Approach

19. Procedures
C om puter Program m ing 20. Complication Programs

Problem Features No C redit

8. Data Types (Except Boolean)
9. Boolean

Number of Natural Language and Computer Language Categories Generated

For this analysis, then, the natural language category includes both the "features"

and "process" categories. Similarly, the computer language category includes both the

"features" and "process" programming categories. To test the hypothesis that no

www.manaraa.com

73

differences exist in the categorization behavior of the four groups, a chi-square test

was performed on the number of natural language and computer language categories

produced by each group. The hypothesis was rejected (x^ = 19.01, significant at .001

level). The groups are exhibiting significantly different categorizing behavior. Is there

a pattern to these differences?

The first analysis sought to determine whether the four subject groups differed in

the relative frequency with which they used natural language problem labels versus

computer programming problem labels.

Figure 10 shows the mean number of natural language and computer language

categories generated by each group. As experience and inductive reasoning skills

increase, the number of natural language concepts decrease and the number of

computer concepts increase.

The reader will recall that all subjects were asked to generate five categories for the

thirty problems. As predicted, the novices of average G f produced the greatest

number of natural language categories. An average of 4.89 out of five were natural

language categories. The novices of high Gf produced, on average, four natural

language categories out of five. Likewise, intermediates of average Gf generated four

out of five, while intermediates of high Gf generated 3.27 out of five natural language

categories. The most striking result is the small number of computer language

categories generated by the groups with computer experience. Although the

intermediates generated more computer language categories than the novices, it was

surprising to see how few they produced. Average Gf experienced programmers

generated only one out of five, and the high Gf experienced programmers generated

only 1.73 out o f five.

www.manaraa.com

74

Perhaps the time limit of 25 minutes was too short. An expert who completed the

same sorting task indicated that he probably would have produced more refined sorting

categories if he had more time to complete the task. This issue will be further explored

in the final discussion in Chapter 7.

Figure 10. Mean Number of Natural Language and Computer Language Categories
Generated by Novice and Intermediate Level Programmers of Average and
High Inductive Reasoning (Gf)

■ Natural Language Categories
□ Computer Language Categories

N ovice
Average High

Inductive Reasoning

Intermediate
Average High
Inductive Reasoning

Types of Category Responses

Additional differences between the four subject groups emerged when problem

categories were further subdivided. For these analyses, the natural language and

computer language categories were decomposed once again into two subgroups each

(see Table 13). The percent of problem levels which were assigned to each o f these

www.manaraa.com

Figure 11. Types of Category Responses Made by Novice and Intermediate
Level Programmers of Average and High Inductive Reasoning (Gf)

NOVICE
Average Inductive Reasoning

2 .2%

24.4%

73.3%

High Inductive Reasoning

2.5% 2.5%
15%

37.5%

42.5%

Natural Language
Problem Features

@ Problem Process
Computer Language

■ Problem Features
^ Problem Process

□ No Credit

INTERMEDIATE

Average Inductive Reasoning
4% 8%

High Inductive Reasoning

7.3% 5.4%

www.manaraa.com

76

four categories (plus a no-credit category) is shown in Figure 11, separately for each

of the four ability by experience groups.

The percent of problem labels assigned to the surface features category by the

rater was much higher for the average Q£ novices than for the other three groups.

High Q f novices also relied primarily on natural language categories. However, in

contrast with the intermediate Q f novices, high £if novices used more problem process

labels. This same trend is mirrored in the data for the students with some

programming experience: low Q f intermediates used considerably fewer programming

labels that focused on programming processes than did the high Qf intermediates.

Thus, if there is a generalization here, it would appear that the experience dimension

predicts the extent to which subjects use programming concepts to categorize problems

whereas the inductive reasoning dimension predicts the extent to which they will focus

on how problems are solved.

Final Discussion

Categorization and Learner Characteristics

It is important to note that the sorting task was administered a few weeks prior to

the first examination in the introductory programming course in Pascal. The novice

and experienced programmers who were all learning a new programming language

were able to categorize programming problems in a meaningful way. What

organizational framework did they use to categorize these problems? Do individual

differences in inductive reasoning skills influence categorization?

The results from the multidimensional scaling and cluster analyses suggest that

categorization behavior is influenced by both prior computer programming experience

www.manaraa.com

77

and level o f inductive reasoning skills. As programming experience and inductive

reasoning skills increase, categories are based less on superficial features in the

problem statements and more on underlying solution features or strategies.

More specifically, novices of average and high inductive reasoning skills appear

to categorize problems according to primary or secondary surface features in the

problem statements. In addition to surface characteristics, evidence suggests that

novices of high inductive reasoning skills organize some of their knowledge around

problem types (e.g., loops and decision-oriented categories).

The results of this study suggest that intermediate level programmers use both

surface features and inferred constructs not found in the problem statements to

categorize the programming problems. For example, like the novice groups, members

of both intermediate groups put the geometry problems together without carefully

considering whether the problems required similar solution algorithms. In addition,

however, evidence suggests that a deeper categorization framework based more on

problem types was also used.

For the experienced programmers of average inductive reasoning skills, it was

difficult to determine the sorting categories from the multidimensional scaling and

cluster anlayses. However, analysis of the labels given to the categories indicated that

the experienced programmers of average Qf used several computer-related categories

for organizing the problem statements (data types, operations with data types, output

oriented, loops, and algorithms). This qualitative analysis revealed that these

intermediate level programmers of average inductive reasoning skills generated fewer

categories based on the programming procedure than did the intermediate level

programmers o f high analogical reasoning skills.

www.manaraa.com

78

The multidimensional scaling and cluster analyses suggest that some experienced

programmers of high inductive reasoning skills categorize problems according to a

solution strategy—a sort algorithm. The more qualitative analysis of labels further

supports this interpretation.

Are differences between the groups confounded with Math achievement? To

answer this question, T-tests for independent means were performed for differences

between group means on ACT Math achievement. No significant differences were

found. The mean ACT scores for each group are shown in Table 14. (ACT Math

scores were not available for seven subjects.) From the available data, it does not

appear that differences between the groups are confounded with math achievement.

Table 14. Mean ACT Math Scores and Standard Deviations (S.D.) for Novice
and Intermediate Programmers of Average and High Inductive Reasoning (Gf)

Crouc Mean S.D. i£

Novice Average Gf 25.29 4.72 7

Novice High Gf 28.14 2.61 7

Intermediate Average Gf 25.25 3.30 4

Intermediate High Gf 26.38 4.31 8

Categorization and Problem Representation

What is the relation between categorization responses and an individual's

representation of problems? Chi, Feltovich and Glaser (1981) suggest two plausible

www.manaraa.com

79

interpretations, one theory proposed by McDermott and Larkin (1978) and an

alternative interpretation proposed by themselves.

According to McDermott and Larkin, researchers in the area of physics problem

solving, the process of representing a problem proceeds in the following way: (a) the

problem statement is read; (b) a representation is formed; and (c) based on the

representation, the problem is categorized. While solving a problem, the problem

solver progresses through four stages of representations.

1. Stage one -- a literal representation of the problem is made. It contains

relevant key words.

2. Stage two — a "naive" representation is created. This representation contains

the literal objects and their spatial relationships as stated in the problem statement. An

individual with little or no prior knowledge in a field could create a stage two

representation.

3. Stage three -- a "scientific” representation is formed containing the idealized

objects and relevant concepts necessary to generate the equations for stage four of the

problem representation process.

4. Stage four — equations are produced resulting in an algebraic representation.

In the Study 2 sorting task described in this chapter, subjects were asked to sort

computer programming problems into categories based on similarities of solution. An

interpretation of the results of Study 2 from the McDermott-Larkin framework, then, is

that the novices of average inductive reasoning skills appear to base their categorization

mainly on the construction of literal representations, or what are here called natural

language concepts. The experienced programmers' categorization is based on both

naive (or natural language) representations and scientific (or programming)

www.manaraa.com

80

representations. However, the McDermott-Larkin framework does not accomodate the

finding that high (jf subjects in both experience groups appeared to generate problem

representations that emphasized solution process.

In this respect, then, the Study 2 results are consistent with Holland, Holyoak,

Nisbett and Thagard's (1986) assertion that induction plays a vital role in generating a

problem representation. They argue that induction consists of generating and revising

the units of the problem representation from which mental models are constructed. It

is not surprising, then, that novice and experienced programmers of different levels of

inductive reasoning skills generate somewhat different categories and, hence, problem

representations. The key difference attributable to inductive reasoning appears to be

the extent to which problems are represented by how they are solved rather than by the

terms or concepts embedded in them.

Chi, Feltovich and Glaser (1981) postulate more interaction among stages of

representation than McDermott and Larkin (1978). An interesting feature of this

alternative hypothesis is that a problem representation is not fully constructed until

after the initial categorization process. More specifically, after a preliminary analysis

of problem features, a problem is tentatively categorized. This process can be

accomplished by a set of rules that specify problem features and the corresponding

categories to be cued. Next, available knowledge associated with the category is used

to construct a plan for solving the problem. Chi and her colleagues suggest that the

knowledge available for a problem type constrains and guides the final form of the

problem representation. A "schema" (Rumelhart, 1981) for a particular problem type

is composed of a category and its associated knowledge in the knowledge base. They

argue that the quality of the problem representation is ultimately determined by the

www.manaraa.com

81

contents of these problem schemata.

Study 2 suggests that, in general, as programming experience and inductive

reasoning skills increase, categories and, hence, representations are based less on

superficial features in the problem statement and more on underlying solution features

or strategies. Because differences are found in categorization responses, the problem

schemata of novice and experienced programmers of average and high inductive

reasoning skills should contain different knowledge. Study 3 is designed to give a

more direct look at the knowledge accessed by the category labels.

www.manaraa.com

82

CHAPTER V

STUDY 3

The purpose of this study was to gain more insight into the categorization and

problem representation process. To this end, it is useful to know what knowledge is

associated with the category descriptions given in Study 2. For purposes of this

research, it is assumed that the category descriptions provided by experienced and

novice programmers represent labels used to access related units of knowledge, i.e.,

schemata. Study 3 was designed to access the knowledge associated with these

schemata. "It is the content of these problem schemata . . .that ultimately determines

the quality of the problem representation" (Chi, Feltovich & Glaser, 1981, p. 135).

Hence the purpose of Study 3 was to uncover what knowledge is contained in the

schemata of experienced (intermediate and advanced intermediate) programmers and

novices.

Research Questions

1. What knowledge is associated with the category labels?

2. Do individual differences in inductive reasoning skills and computer programming

experience influence the knowledge contained in the schemata of the subjects?

Method

Subjects

Twelve subjects from Study 2 participated: three novices of high inductive

www.manaraa.com

83

reasoning, three novices of average inductive reasoning, three experienced

programmers of high inductive reasoning, and three experienced programmers of

average inductive reasoning. Only students with extreme scores on the Raven’s

Advanced Progressive Matrices Task were invited to participate.

Subjects with scores of 25 and below were referred to as average inductive

reasoners (Gfi. Subjects with scores of 30 and above were called high inductive

reasoners (GO. (Note: In Study 2 the cut off score was 26 points for the high

inductive reasoning group.)

The novice group was composed of novice programmers with either no prior

programming experience or one semester of programming in high school. The

experienced group was made up of intermediate and advanced programmers with

programming experience ranging from two semesters of college level programming

(two different languages) to six semesters of college level programming plus work

experience. The initial plan was to include only the advanced experienced

programmers. However, of the five possible candidates with average inductive

reasoning scores, only one was interested in participating in Study 3. Consequently,

in an effort to equate the two experience groups, only one advanced intermediate was

included in each group. In summary, the subjects were: (a) three novices of average

inductive reasoning skills, (b) three novices of high inductive reasoning skills, (c) two

intermediate and one advanced programmer of average inductive reasoning skills, and

(d) two intermediate and one advanced programmer of high inductive reasoning skills.

The intermediate and advanced programmers are referred to as "intermediate’'

programmers throughout this study.

The subjects were paid $3.50 per hour.

www.manaraa.com

84

Materials

Materials consisted of a set of category labels ranging from surface features of

problems to secondary features such as algorithms used to solve problems. Category

labels (see Table 15) were chosen from typical category responses generated by both

novice and experienced programmers during the categorization task in Study 2. One

additional experimenter-generated label was added-the "test" label.

Table 15. Free-Association Labels

* Array * Listing

* Boolean * Loop

* Characters * Money Operations/

* Complex Math Problems Financial Problems

involving manipulation of * Multiple Loops

input over several steps * Procedures

* Easy Math Problems * Real

* Function * Sort

* Geometry * Test

* Integers

Procedure

Subjects were given 16 pieces of paper with one category label written on the first

www.manaraa.com

85

line of each page. The labels were listed in a different random order for each subject.

All 16 pages were placed face down. At the test administrator's signal, the first page

was turned over. Subjects were told that they had four minutes to write everything

they could think of when they read the particular category label, including how

problems in this category might be solved. The time keeper informed the subjects

when it was time to go on to the next category label.

Results and Discussion

The research question, "What knowledge is associated with the category labels?",

was decomposed into the following sub-questions:

1. Are natural language concepts associated with the iabel(s)?

2. Are computer language concepts associated with the label(s)?

3. Is the conceptual knowledge associated with the labels different for novice and

experienced programmers of average and high inductive reasoning skills?

The data from this elaboration task was rated by two teaching assistants from the

computer programming course. One rater determined the boundaries between

concepts for each label. Then both raters scored each concept for all subjects across all

labels. When deciding whether a concept was a natural language concept or a

computer concept, the raters agreed on all but 5 of the 970 concepts. Thus, the

agreement between the two raters was nearly 100%.

The following example may help to clarify the distinction between a natural

language and a computer concept. For the label "characters", one subject gave the

following two responses: "the Three Stooges are these" and "they need single quote

marks around them or they will create errors". The first response was rated as a

www.manaraa.com

86

natural language concept, whereas the later response was rated as a computer concept.

Production of Natural Language Concepts and Computer Concepts

Hypotheses-

1. Intermediate programmers will generate more computer concepts than natural

language concepts.

2. Intermediate programmers with high inductive reasoning skills will generate

the highest percent of computer concepts.

3. Novices will produce more natural language concepts than computer

concepts.

4. Novices with average inductive reasoning skills will generate the lowest

percent of computer concepts.

Novice and intermediate programmers both generated associations that were

classified as natural language association and as computer associations. However,

novice students produced more natural language concepts than did intermediate

programmers. Table 16 reports the mean number of natural language concepts for

novice and intermediate programmers.

McKeithen, Reitman, Rueter, and Hirtle (1981) also found that novices associate

programming concepts with a rich variety of natural language associations. However,

in their study, the novice group included both people with no prior programming

experience and people with prior experience in BASIC and FORTRAN.

Since this task was administered only a few weeks into the semester, it was

anticipated that the novices would not have well-developed schemata. Hence it was

hypothesized that the novices would not generate a rich variety of computer

www.manaraa.com

87

associations. Contrary to expectations, novice and intermediate programmers

generated a similar number of computer concepts. These results are reported in Table

17.

Table 16. Mean Number of Natural Language Concepts for Novice and
Intermediate Programmers of Average and High Inductive Reasoning (Gf)

Inductive Reasoning (Gf)
Average High ALL

Intermediate 37.33 11.33 24.33

Novice 42.33 28.50 35.42

ALL 39.83 19.92

Note. N= 1 2 -three people per group.

Table 17. Mean Number of Computer Concepts for Novice and
Intermediate Programmers of Average and High Inductive Reasoning ('Gf)

Inductive Reasoning (Gf)
Average High ALL

Intermediate 43.00 59.67 51.34

Novice 35.67 65.50 50.59

ALL 39.34 62.59

Note. N=12--three people per group.

www.manaraa.com

88

When the same data on number of natural and computer concepts is analyzed

from the perspective of inductive reasoning skills, some interesting patterns emerge.

Tables 16 and 17 both show that the main effect for G f is greater than the main

effect for programming experience. Subjects high in G f produced fewer natural

language concepts and more computer concepts than did subjects with average Gf

scores. It is surprising that Q f is a better predictor of the number of computer-related

concepts generated than is computer programming experience. This may be an artifact

of sample size. It may also reflect the fact that most of the stimuli used in this task

were identified as labels for different types of programming processes in Study 2.

Furthermore, in Study 2 it was found that high G f subjects appeared to focus more on

representing the process whereby problems would be solved than did average Gf

subjects. Thus, this somewhat surprising data in Table 17 may have a familiar

explanation.

It is interesting to note that the proportion of the concepts generated by each group

that were computer concepts follows a similar pattern as the scores for each group on

the first exam in the course. This is shown in Table 18. This exam was taken

approximately two weeks after the administration of this elaboration task.

Individual scores for number of concepts for both the G f and experience

dimensions are presented in Appendix F, Table 31. The individual ratings for subjects

in that appendix are the result of averaging across all labels for each subject to achieve

a single rating for that subject. Each rater did this process; then, the raters' ratings of

each subject were averaged.

It was surprising to find that the novices produced on the average a similar

www.manaraa.com

89

number of computer concepts as the students with intermediate level computer

experience. A closer look at word production per concept sheds light on this finding.

Table 18. Percent of Total Concepts and Programming Course Exam Scores for
Novice and Intermediate Programmers of Average and High Inductive Reasoning (Gf)

Programming Inductive Elaboration Course Exam 1
Dimension Reasoning Process

% of Total Concepts
Natural
Language

Computer
Language

SCQre Glide

Intermediate High 16.00 84.00 121.30 B

Intermediate Average 46.50 53.50 97.00 C

Novice High 30.30 69.70 107.00 C

Novice Average 54.30 45.70 100.003 Ca

aDoes note include Exam 1 scores and grades for the novice programmers of average
inductive reasoning who dropped the course before the first exam.

Words Within Concepts

Hypotheses. No specific hypotheses were made.

Words were counted for all natural language and computer concepts. "Natural

language words" refers to the words that compose the natural language concepts. For

example, for the label "real" a natural language concept is "Dairy products carry this

sign". This concept contains five words, consequently, it was given a score of 5 for

word production. "Computer words" refers to the words that compose the computer

www.manaraa.com

90

concepts. Again for the label "real", a computer concept is "It is important never to

cross integer/real types which will cause a TYPE CLASH’ error." This concept was

given a score of 16 for word production.

Novices generated almost twice as many natural language words as experienced

subjects. But once again, effects for <jf were larger: low Q£ subjects generated more

than twice as many natural language words as high Q f subjects. Results are shown in

Table 19.

For computer words, on the other hand, effects for experience and Q f were

comparable. These results are reported in Table 20. Intermediate level programmers

generated more computer words than novices. So although the novices produced a

similar number of computer concepts as the intermediate programmers, the

experienced programmers’ average word production per concept was higher.

Table 19. Mean Number of Natural Language Words for Novice and
Intermediate Programmers of Average and High Inductive Reasoning (Gf)

Inductive Reasoning (Gf)
Average High ALL

Intermediate 277.67 109.33 193.50

Novice 552.33 207.00 379.67

ALL 415.00 158.17

Note. N=12--three people per group.

www.manaraa.com

91

Table 20. Mean Number of Computer Words for Novice and
Intermediate Programmers of Average and High Inductive Reasoning (Gf)

Inductive Reasoning (Gf)
Average High ALL

Intermediate 762.67 912.33 837.50

Novice 555.67 796.67 676.17

ALL 659.17 854.40

Note. N=12--three people per group.

A table summarizing the number of natural language and computer concepts per

label for each group is reported in Appendix G, Table 32.

Summary

Thus far, comparisons have been made among the groups participating in Study 3

based on differences between natural language concepts and computer concepts. All

groups displayed evidence of rich natural language and computer associations with the

labels. Again, the labels designating schemata (i.e., related units of knowledge) were

initially generated by the subjects in Study 2 (except the "test" label). The purpose of

exploratory Study 3 was to uncover what knowledge is contained in the schemata of

novice and intermediate level programmers. Thus far, the results suggest that both

natural and computer associations are contained in the schemata for each

experience/inductive reasoning group to different degrees. What levels of knowledge

do these associations represent? For example, are the natural and computer language

www.manaraa.com

92

associations mainly facts or definitions (declarative knowledge), or do they perhaps

include information about how to process information (procedural knowledge)?

Levels of knowledge expressed within each concept are investigated in the next

section.

Levels of Knowledge Within Concepts

Are different levels of knowledge associated with the natural and computer

language concepts? Are the levels of knowledge different for novice and intermediate

programmers of different inductive reasoning skills who are all learning a new

language?

Hypotheses. No specific hypotheses were made.

The concepts generated by the people in this study ranged from simple definitions

to examples to solution strategies. To understand more about the kinds or levels of

knowledge expressed within each concept, each concept was rated.

Rating Scale for Natural Language Concepts. The natural language concepts

were rated on a two-point scale. One point was given for definitions and general

associations. Two points were given for more elaborated statements including

examples and solution-related associations. For example, the following

subject-generated concept for the label "easy math problems" was given a rating of

one: "anything that the calculator can help with." In response to the same label, a

score of two was given to: "equations involving graphing lines, circles, parabolas,

ellipses, hyperbolas."

www.manaraa.com

93

Rating Scale for Computer Concepts. Since the focus of this research is

computer-language acquisition, a greater level of discrimination was used in rating the

computer concepts. Therefore, the computer concepts were rated on a three-point

scale ranging from 3 to 5. Three points were given for definitions and general

computer associations, four points for complex definitions and examples and five

points for specific references to conditions and solution strategies for solving

computer-programming problems. A rating of three was given to the following

response for the label "procedure": "the part of a Pascal program that does all of the

main work." In response to the same label, a rating of 4 was given to: "for example

you wouldn't need to write code to print some blank lines several times. You would

just have one procedure to do it and call that procedure anytime you needed blank lines

printed." A rating of five was given for this response to the label "loop": "ex. for I:=l

to 10 do statement;".

Reliability Checks. Using a version of the Kuder-Richardson formula 20 for

multiple raters, reliability checks were made on the ratings of both natural language

and computer concepts. For the two raters, the reliability coefficients were .48 for

natural language concepts and .80 for computer concepts. The raters were the same

two teaching assistants mentioned previously. Each final concept rating was derived

by averaging the ratings o f the two raters.

Natural Language Concept Ratings. The majority of natural language concepts

for all groups were simple definitions or general statements as opposed to examples or

solution-related strategies. The means for the natural language concept ratings ranged

from 1.25 to 1.41. These results are reported in Table 21.

www.manaraa.com

94

Table 21. Means for Natural Language Concept Ratings for Novice and
Intermediate Programmers of Average and High Inductive Reasoning (Gf)

Intermediate

Inductive Reasoning (Gf)
Average High

1.25 1.33 1.29

ALL

Novice 1.35 1.41 1.38

ALL 1.30 1.37

Note. N= 12—three people per group.

Computer Concept Ratings. The means for the computer concept ratings for

novice and intermediate groups ranged from 3.28 to 3.51 indicating that the majority

of the computer concepts generated were simple definitions or general

computer-related associations. These results are reported in Table 22.

The individual ratings for both natural language and computer concepts are

presented in Appendix F, Table 31. These individual ratings for natural language and

computer concepts are the result of averaging across all labels for each subject to

achieve a single raring for that subject. Then both raters' ratings of that subject were

averaged.

High Computer Concept Ratings. Of the 612 computer concepts rated, 226 or

37% received ratings of 4 or 5. (A rating of 4=complex definitions and examples; a

rating of 5=conditions for action and solution strategies.) Who received these higher

ratings? The largest number of complex definitions and examples, 86 or 42%, were

www.manaraa.com

95

Table 22. Means for Computer Concept Ratings for Novice and
Intermediate Programmers of Average and High Inductive Reasoning (Gfi

Inductive Reasoning (Gfi
Average High ALL

Intermediate 3.29 3.38 3.34

Novice 3.28 3.51 3.40

ALL 3.29 3.45

Note. N=12~three people per group.

generated by the novices of high inductive reasoning. The intermediate programmers

of high inductive reasoning produced 61 or 29% of the computer concepts rated 4. In

contrast, the intermediate programmers of average inductive reasoning generated 31 or

15% of the complex definitions or examples. That is, they produced half as many as

the intermediate programmers of high inductive reasoning. The novices of average

inductive reasoning generated 28.5 or 14% of the concepts.

Who received the highest ratings for instances of conditions for action or solution

strategies? For the intermediate programmer groups, only 2.5 computer concepts

were rated 5, whereas 17.5 were rated 5 for the novice groups. Of the 17.5, 12.5

were from the novices of high inductive reasoning. Table 23 gives the total number of

computer-language related concepts with high ratings generated by each subject.

Why did the intermediate programmers of high inductive reasoning receive fewer

ratings of 4 and 5 than the novice subjects with high inductive reasoning? A

www.manaraa.com

96

Table 23. Total Number of Computer-Language Related Concepts With High Ratings
Generated by Each Programmer

Intermediate Level Programmers

Average Inductive Reasoning High Inductive Reasoning

Complex Definitions Conditions & Complex Definitions Conditions &
& Examples Solution Strategy & Examples Solution Strategy

Subject 1 3.5 0.0 Subject 4 23.0 0.0
Subject 2 15.0 2.5 Subject 5 22.5 0.0
Subject 3 12.0 Subject 6 15.0 OQ

Totals 30.5 2.5 Totals 60.5 0.0
Means 10.17 .83 Means 20.17 0.0

Novice Programmers

Average Inductive Reasoning High Inductive Reasoning

Complex Definitions Conditions & Complex Definitions Conditions &
& Examples Solution Strategy & Examples Solution Strategy

Subject 7 17.5 2.0 Subject 10 37.5 9.5
Subject 8 9.5 3.0 Subject 11 21.0 2.5
Subject 9 JLJ> Q& Subject 12 27.5 A

Totals 28.5 5.0 Totals 86.0 12.5
Means 9.5 1.67 Means 28.67 4.7

Note. The complex definitions and examples received a rating of four. Conditions for
actions and solution strategies received a rating of five.

free-association task bears little or no resemblance to a problem-solving situation

involving computer programming. Perhaps due to the low ecological validity of this

task, experienced programmers did not tap, to the maximum extent, their knowledge

bases from computer programming.

www.manaraa.com

97

Error Analysis

O f the 973 concepts generated across all groups, only three major errors were

made on computer concepts: one error by an intermediate programmer of average

inductive reasoning; two computer concept errors by novices with high inductive

reasoning. These concepts were not included in the totals. That is, no credit was

given for the three major errors.

Twelve minor computer concept errors were generated. Nine of the twelve errors

were made by novices. Of these nine minor errors, six were made by novices of high

Gf and three by novices of average Qf. The three remaining minor errors were made

by intermediate programmers of high Gf. Concepts with only minor errors were

included in the totals.

Study 3 in Perspective

This exploratory study helped to illuminate knowledge contained in the schemata

of intermediate and novice programmers. We have learned that both natural language

and computer associations are contained in the schemata of novice and intermediate

programmers of average and high inductive reasoning. Novices have a greater number

of natural language associations whereas experienced programmers tend to have more

computer associations with the labels that were generated in Study 2. Novice and

intermediate programmers of high inductive reasoning generate more computer

concepts than novice and intermediate programmers of average inductive reasoning.

Furthermore, these subjects tend to produce more elaborated concepts, i.e., more

complex definitions and examples. This free-association task helped to demonstrate

the declarative knowledge of the subjects but not the procedural knowledge. Only

www.manaraa.com

98

twenty concepts or 4% of the total computer concepts received ratings of 5 (indicating

conditions for action and solution strategies). The novices of high inductive reasoning

generated 12.5 of these concepts in contrast to zero concepts for the intermediate

programmers of high inductive reasoning.

Perhaps the procedural knowledge contained in the schemata of intermediate

programmers would be more apparent in an ecologically valid task such as solving

computer programming problems. This leads us to Study 4.

www.manaraa.com

99

CHAPTER VI

STUDY 4

Study 1 investigated the independent contributions of inductive reasoning skills

and prior computer programming on Exam 1 achievement. Study 2 explored the

differential effects of inductive reasoning skills and computer programming experience

on categorization and problem representation. Study 3 investigated the particular

contributions of inductive reasoning skills and programming experience on the

contents of students' problem schemas.The purpose of Study 4 is to examine in

greater detail the solution plans and programming achievements of novice and

intermediate programmers of average and high inductive reasoning skills.

Study 4 was inspired by the research findings of Chi, Feltovich, and Glaser

(1981), Snow and Lohman (1984), and Soloway, Ehrlich, Bonar, and Greenspan

(1982).

Research Questions

1. Do novice and intermediate programmers of high and average inductive

reasoning skills (Gf) generate correct solution strategies for solving the programming

problems?

2. Is a correct solution strategy a good predictor of success? In other words, an

individual may have a good basic approach but may not be able to execute the strategy

plan in order to generate a correct solution to the programming problem.

www.manaraa.com

100

3. Is successful strategy execution related to individual differences in

programming experience and/or inductive reasoning skills (Gf)?

Method

Subjects

The same 12 subjects who participated in Study 3 participated in this study. The

data for one subject, however, was unusable due to an audiotaping problem.

Consequently, the intermediate group, high inductive reasoning skills (Gf). contained

only two subjects--one advanced intermediate and one intermediate level programmer.

The three remaining groups had three subjects in each group. The novice and

intermediate groups were composed of students with extreme scores on the Raven's

Advanced Progressive Matrices (Set 2), a measure of inductive reasoning (Gf).

Average inductive reasoning refers to students who had scores o f 25 and below;

whereas high inductive reasoning (Gf) refers to subjects who had scores of 30 and

above. Thus, the participants in Study 4 were: (a) three novices of average inductive

reasoning skills, (b) three novices of high inductive reasoning skills, (c) three

intermediate programmers (two intermediate and one advanced intermediate) of

average inductive reasoning skills, and (d) two intermediate programmers (one

intermediate and one advanced intermediate) of high inductive reasoning skills. The

intermediate and advanced programmers are referred to as "intermediate" programmers

throughout this study.

Subjects were paid $3.50 per hour. All subjects had a few weeks o f exposure to

the Pascal programming language in the context of the same course. The Study 4 task

was administered approximately one week prior to the first examination in the course.

www.manaraa.com

101

Materials

Ten problems were chosen from the thirty problems used in the categorization

task in Study 2. The ten problem statements are listed in Appendix H. A teaching

assistant for the introductory Pascal course chose the problems to be typical of those

which students should be able to solve at that point in the course. During the pilot

phase o f the study, a student suggested an eleventh problem analogous to one of the

ten problems because he was certain that the novice students would not have the

knowledge to solve one of the problems. The problem under discussion was problem

8: Write a program which reads in 20 words and prints them out in alphabetical order.

This problem requires string manipulations—a topic not yet covered in the introductory

Pascal course. The analogous problem created by the student was: Write a program

which reads in 20 integers and prints them out in ascending order.

Procedure
Each of the subjects was given the eleven problem statements. For each problem,

subjects were asked to read the problem statement and to think aloud about the "basic

approach" they would take toward solving the problem. They were encouraged to

report all thoughts and hunches they had during the process of deciding upon this

general plan for developing a program. Following this period, the subjects explicitly

stated their general plan for solving the particular problem. Furthermore, they were

asked to state the problem features that led to this plan.

For problems 8 ,9 ,1 0 , and 11, subjects were asked to execute their solution

strategies immediately after they stated their general plan for solving each problem.

That is, subjects were asked to write programs in Pascal.

www.manaraa.com

102

Results and Discussion

The audio tapes of the sessions were transcribed. The raters for this study were

two teaching assistants for the course. Both were graduate students enrolled in a

masters degree program in computer science. One rater read all the transcripts and

scored the basic approach strategies and programming problems for each subject. A

second rater scored the basic approach problems for the three subjects that were the

most difficult for the first rater to score. In addition, the second rater scored one

programming problem across all subjects. Reliability checks were made using a

version of the Kuder-Richardson formula 20 for multiple raters. For the subjects who

were difficult to score on the basic approach task, the reliability was .86. For the one

programming problem across all students, the agreement between the raters was .69.

Since the reliabilities were within an "acceptable" range, the scores for the main rater

were used for all subjects on both basic approach and programming problems.

Hypotheses

No specific hypotheses were made.

Results for the Basic Approach Task (Problems 1-7)

The program plans (i.e., "basic approach") and the programs themselves were

rated using the following scale: 1 = completely incorrect, 2 = poor, 3 = fair, 4 =

good, 5 = very good. Table 24 shows the ratings of each student's basic approach for

problems one through seven.

Contrary to expectations, the means were similar across all groups, with the

intermediate programmers of average inductive reasoning skills receiving the lowest

score. Programming experience appeared to be of little benefit in formulating a general

www.manaraa.com

103

plan for writing a program. Once again, the larger differences were between students

of average inductive reasoning skills and students of high inductive reasoning skills.

Table 24. Basic Approach Scores for Novice and Intermediate Programmers of
Average and High Inductive Reasoning (GF) for Problems 1-7

Basic Approach Scores

Intermediate 3.4
High Q f

Intermediate 2.7
Average Gf

Novice 3.4
High G f

Novice 3.1
Average Gf

Note. Scores are averages for seven problems. A score of 3 is a "Fair" score.
A score o f 4 is a "Good" score.

Results For the Programming Task

The results on the problems requiring both basic approach and programming

(problems 8, 9, 10, and 11) are shown in Table 25. Problem 8 was considered a

practice problem and therefore was not included in the analysis.

The ratings of "basic approach" or programs plans showed relatively little

variability across the four subject groups. These three problems appeared to be more

difficult than problems 1-7, where the average rating of "basic approach" was 3.1.

Here, the average was only 2.4. If there is any relationship between program plans

www.manaraa.com

Ta
bl

e
25

.
Th

re
e

Pr
og

ra
m

m
in

g
Pr

ob
le

m
s:

Ba

sic

A
pp

ro
ac

h
and

Pr

og
ra

m
m

in
g

Sc
or

es
 f

or

No
vi

ce

and

In
te

rm
ed

ia
te

Pr

og
ra

m
m

er
s

of
A

ve
ra

ge

and

Hi
gh

In

du
ct

iv
e

Re
as

on
in

g
Sk

ill
s

(G
f)

104

£ 2
■■ Q6JD y

cn l
= Qm n _GJS wu M

,2 O.cq a

o o q
CN T f CO

t^ o o o
— T t cn

o o q
cn cn co cn

co cn '—* cn

r-̂ co q co
Tf‘ cn CO CO

r- o cj-
co -4 CN CN

cn ~4 -4 —<

CO co O CN
cn cn cn o i

co
£
2W)o

&
£

(A1>>-oo

s:
%e
Cla.<

I/O
cn co cn

wo
•— rr cn

CN
co

Of CN

-d- co cN co

r~-
WO Tf wo tj-

co ■ CN CN

CO

CN CN CN CN

£
§>§

I I "
& -g
I -s ecd g.

CQ CL <

WO
TT CN

CN "d" CO

r~
CN CN - 4

CN CN ■

co
WO ~ CN

'd- CN CN CN CN CN CN CN

E

£

E
CQ

C/3
0)

2 Xdoh1 oo u
£ 00

- Co
O

«o*</3 c
&CO cx
<

CO WO T t

CN ^ CO

r~-
WO CO CO CO

rj- CN CN CN

CN CO CO

t->
■d- CN CN CN

wo CN CN

r-
CO CO CN CN

—> CN+-« M
(J (J (U to * jr>'j-i pO X)3 3

00 00

Is i l
E x ; 3
u M O
5 1 0

CO Tt wo

C/0 C/3 LO

<3 r~- ao
■4-J *-*o o CJ <u <L> <L>
x> x>3 3 3
00 OO 00

C/3c

u SIo 1
o.2f „z i a

CL
3o

XI X X
3 3 3

C/3 C/3 CO

SI
a> &x)

P3
*> a3 o >z <

C/3cCCJ1>

cx,
3

£
o N

ot
e.

Sc
al

e:

1
=

co
m

pl
et

el
y

in
co

rr
ec

t,
2

=
po

or
,

3
=

fa
ir,

 4
=

go
od

,
5

=
ve

ry

go
od

www.manaraa.com

105

and learner characteristics for these more difficult problems, then it appears to be with

an average of experience and Gf Thus, ratings were lowers for the average Gf

novices, highest for the high G f intermediate programmers, and intermediate for the

two mixed groups.

For ratings of the programs themselves, however, Gf was once again the more

potent predictor than experience. The best programs were produced by high Gf

novices and the worst programs by average Gf novices. Differences between high and

average Gf intermediate programmers were in the same direction, but smaller. It is

noteworthy, however, that the average Gf intermediate programmers did much better

than the average Gf novices (means = 2.6 and 1.7, respectively).

Thus, although the correlation between the ratings of program plans and the

program actually produced for the 11 subjects was fairly high (r = .66), the two scores

appear to capture somewhat different aspects of performance. It appears that program

plans can be developed by relying on programming experience and/or inductive

reasoning abilities. When it comes to actually writing the program, however, average

Gf students without experience did not perform as well as average Gf students with

experience. Of course, sample sizes are perilously small and so these generalizations

are merely hypotheses for future investigation.

Final Discussion

Consistent with results from Studies 2 and 3, the novice and experienced

programmers with high inductive reasoning skills performed better than the novice and

experienced programmers with average inductive reasoning skills. Q f or inductive

reasoning skills are generally required when instruction involves new or unusual

www.manaraa.com

106

stimulus conditions or when it requires decontextualization (Snow & Lohman, 1984).

Program problems appeared to be particularly novel for the novice students, and so

their performance was strongly related to Gf.

The finding that a good plan is a good predictor of a good program is consistent

with the results of a study of Pascal learning by Soloway, Ehrlich, Bonar, and

Greenspan (1982), who also found that choice of the appropriate looping strategy was

a good predictor of programming success.

There were three instances out of ten, or 30%, where an incorrect basic approach

was modified in the process of programming to produce a correct solution. Two

novices of high inductive reasoning skills and one experienced programmer of average

inductive reasoning skills were able to abandon their initial strategies for new correct

strategies. The novices of high inductive reasoning skills (Gf) showed the greatest

improvement in scores from basic approach to the actual programming of strategies.

They were able to implement or modify their solution strategies in process to better

meet the demands of the programming task. In contrast, the novice group with

average inductive reasoning skills (Gf) did worse from basic approach scores to

executing their solution strategies. (The means for the three basic approach and

programming problems are in the last two columns in Table 25.)

In Chapter 1, it was argued that inductive reasoning skills are important in

helping the problem solver design a plan for solving a problem. Furthermore, it was

hypothesized that different levels of inductive reasoning skills should differentially

effect the problem representations and, thus, the mental models students construct and,

hence, their solutions to problems. Evidence from Studies 2-4 supports this

www.manaraa.com

107

hypothesis. Again, it must be emphasized that this is exploratory research.

Refinements of the tasks are needed as well as replications using many more subjects.

In the next chapter, the results from Studies 1-4 will be reviewed and discussed

further. In addition, implications for instruction will be presented.

www.manaraa.com

108

CHAPTER VII

FINAL DISCUSSION

Business and research firms need more programmers who have not only a strong

knowledge base in computer science but who can also solve novel problems.

Typically, only a small percent of the programmers in a given organization actually do

the truly innovative programming, while the majority of the programmers do lower

level design and coding. Some claim that this is because many programmers have

difficulty solving novel problems. The roles of both novel problem skills (inductive

reasoning skills) and domain specific knowledge were examined in Studies 1-4.

Before summarizing the results of Studies 1-4, a brief historical review of the

arguments for the role of general cognitive skills versus specialized domain knowledge

will be presented. For a more detailed review, read Perkins and Salomon (1989).

Thirty years ago, achievement was widely held to be a product of finely-honed

general problem-solving strategies. The particular knowledge base (e.g., chess

patterns, programming knowledge) and its organization were incidental. This view

was challenged and supplanted by the notion that expert performance is driven by a

rich knowledge base of context specific schemata (e.g., deGroot, 1966; Chase &

Simon, 1973; Reitman, 1976; Chi, Feltovich & Glaser, 1981).

General heuristics appeared to be no substitute for the rich database of
ramifications, stored in memory, accessed by recognition processes, and
ready to go. Indeed, the broad heuristic structure of expert as contrasted to
novice problem solving—the reasoning forward rather than reasoning
backward—seemed attributable not to any heuristic sophistication on the pan
of the expens, but to the driving influence of the experts' rich database.

www.manaraa.com

109

General heuristics no longer looked as central or as powerful. (Perkins &
Salomon, 1989, p. 18)

Artificial intelligence research played a major role in this transition. Researchers

progressed from generic programs (e.g., General Problem Solver) to expert systems.

Research on transfer supported the view that the training of general cognitive skills had

no clear benefits outside the specific domain in which it was taught.

However, recent results and theory have challenged the view of expert

performance as driven primarily by a rich knowledge base (Perkins and Salomon,

1989). When experts face unfamiliar problems, they appear to apply many general

strategies in addition to deploying domain specific principles (e.g., Clement, 1982).

According to Perkins and Salomon, the general heuristics do not substitute for domain

knowledge. They argue that general skills "operate in a highly contextualized way

accessing and wielding sophisticated domain knowledge" (p.20). Perkins and

Salomon suggest an analogy to explain the role of general cognitive skills in relation to

domain specific knowledge:

Cognitive skills are general tools in much the way the human hand is. Your
hands alone are not enough; you need objects to grasp .. . Likewise, general
cognitive skills can be thought of as general gripping devices for retrieving and
wielding domain-specific knowledge, as hands that need pieces of knowledge to
grip and wield and that need to configure to the kind of knowledge in question.
(p-23)

In this research, the cognitive skills of interest are inductive reasoning skills,

whereas the domain specific knowledge refers to prior computer programming

experience. A summary of the results from each study will be presented next,

followed by a brief discussion, implications for instruction, and conclusions.

www.manaraa.com

110

Summary

Study 1

The goal of the first study was to determine whether individual differences in

inductive reasoning abilities and prior computer programming experience make

independent contributions to the prediction of first examination scores and course

grades in an introductory computer programming course.

A model was created for predicting Exam 1 success. The model contained two

components: inductive reasoning and computer-related knowledge base. The

computer-related knowledge base included prior programming experience and ACT

Math scores. A regression analysis revealed that each variable in the model made a

significant and approximately equal contribution to the model. The model yielded an

r-square of .31 for predicting Exam 1 success (n = 52). Predicting Exam 1 success

was of particular interest in this study because many students drop the course as soon

as they receive their Exam 1 scores. (By the 7th week of the course, 40% of the

enrolled students had dropped the course.)

The same model was used for predicting course grades. A regression analysis

revealed that the model was not a good predictor of final exam scores and an even

poorer predictor of course grades.

Study 2

The purpose of Study 2 was to ascertain if novice programmers and intermediate

level programmers, who are all enrolled in an introductory course in Pascal, have

different organizational categories for their new knowledge. Do individual differences

in inductive reasoning skills (Gf) influence categorization behavior?

www.manaraa.com

I l l

A sorting task consisting of 30 computer programming problems was

administered. The results for 17 novices and 16 intermediate level programmers of

average and high inductive reasoning skills (Gf) were analyzed using multidimensional

scaling and cluster analysis procedures. Results from the quantitative and qualitative

analyses suggested that categorization behavior is influenced by the subject's level of

inductive reasoning as well as by prior computer programming experience. As

programming experience and inductive reasoning (Gf) increase, categories are based

less on superficial features in the problem statements and more on underlying solution

features or strategies.

Study 3

For purposes of this research it was assumed that the category descriptions

provided by novice and experienced programmers in Study 2 represent labels used to

access related units of knowledge, i.e., schemata. The purpose of Study 3 was to

uncover what knowledge is contained in the schemata of novice and intermediate level

programmers of average and high inductive reasoning skills.

Six novices of average and high inductive reasoning skills (Gf) and six

intermediate level programmers of average and high inductive reasoning skills (Gf)

completed a free association task based on category labels generated by subjects in

Study 2. Results indicated that both natural and computer associations are contained in

the schemata of novice and intermediate level programmers of average and high

inductive reasoning skills (Gf). Novice and experienced programmers of high

inductive reasoning skills (Gf) generated a greater number of computer concepts and

more complex computer concepts. That is, the novice and intermediate level subjects

www.manaraa.com

112

of high inductive reasoning skills (Gf) created more complex definitions and examples

than the novice and intermediate level subjects of average inductive reasoning skills

(Qf).

Study 4

The purpose of Study 4 was to examine in greater detail the solution plans and

programming achievements of novice and intermediate level programmers of average

and high inductive reasoning skills (Gf). Eleven of the twelve subjects who

participated in Study 3 participated in this study. The subjects were asked to think out

loud while generating their basic approaches to eleven computer programming

problems. For the last four problems, subjects wrote programs.

Ratings o f the quality of program plans did not vary markedly across the four

groups of subjects. For easier problems, Q f was the best predictor o f the rated quality

of plans; for more difficult problems, both Q f and programming experience were

important, perhaps both being required for the generation of a good plan.

For the three problems requiring programming, a correct basic approach was a

good predictor of programming success. The novices of high inductive reasoning

skills (Qf) as a group showed the greatest improvement in scores from the basic

approach to actual programming. On the other hand, the novice group with average

inductive reasoning skills (Qf) did worse translating basic approaches into solution

strategies. Differences between high and average Q f experienced programmers were

in the same direction, but much smaller.

Discussion

Why are intermediate level programmers of average inductive reasoning skills

www.manaraa.com

113

(Gf) performing poorer than the intermediate programmers of high inductive reasoning

skills (Gf)? Likewise, why are novices of average inductive reasoning skills (Gf)

performing worse than novices of high inductive reasoning skills (Gf)? Clearly,

inductive reasoning abilities are important contributors to good performance on many

of the programming tasks used in this study. The fact that such skills are generally

better predictors of performance than the amount of programming experience is itself

an important contribution to the literature on the nature of expertise in computer

programming. But what are thinking skills, here called "inductive reasoning," and

how do they produce the effects observed in these studies? Snow (1980) offers one

hypothesis. His explanation focuses on the difference between estimates of prior

learning or achievement in a particular domain (called crystallized abilities or (j£) and

estimates of inductive reasoning (called fluid ability or Gf):

Gc may represent prior assemblies of performance programs retrieved as a
system and applied anew in instructional situations not unlike those
experienced in the past, whereas Q f may represent new assemblies of
performance processes needed in more extreme adaptations to novel
situations. The distinction, then, is between long-term assembly for transfer
to familiar new situations versus short-term assembly for transfer to
unfamiliar new situations, (p.37)

Here, "assembly" refers to the process whereby the learner produces an internal

program or sequence of operations for solving a task. Assemblies can be of either

conceptual or procedural knowledge. With practice, particular assemblies can become

organized and retrieved as crystallized units. "Component" refers to a cognitive

operation which transforms one representation into another. Whenever the learning

conditions are similar to those in which the crystallized units have been useful in the

past, the learner will most likely retrieve old assemblies and apply them in the new

situation (Snow & Lohman, 1984). For example, experienced programmers with high

www.manaraa.com

114

inductive reasoning skills recognized several programming problems as a particular

problem type—sort problems. However, when problems are unfamiliar, then the

learner must actually assemble, implement, and revise a solution strategy while

attempting to solve the problem.

The results from Study 1 indicated that during the early stages of learning a new

programming language, inductive reasoning is a particularly strong correlate of Exam

1 achievement (i = .39) and Exam 2 achievement (r = .45). The role of prior computer

experience (crystallized knowledge) is important but not as striking, and decreases as

the students progress from Exam 1 (r = .30) to Exam 2 (r = .25). The results from

exploratory Studies 2-4 further support the importance of inductive reasoning skills in

categorizing and representing problems, in schema development, in solution plans,

and in programming achievement. Intermediate and novice programmers of high

inductive reasoning skills (Gf) were better able to recognize when to apply their

previously formed crystallized units and were more able to form new assemblies

whenever previously crystallized units could not be applied. That is, learners with

high inductive reasoning skills were able to flexibly adapt their performance programs

to meet the demands of the situation.

As previously mentioned, the first step in R eif's (1979) problem-solving model

involves representing or redescribing any problem in terms of concepts provided by

the knowledge base. This knowledge base is organized according to problem

schemata, each of which, Reif hypothesizes, contains information necessary to solve a

specific category of problem. In the process of identifying a problem as an instance of

a particular type of problem, associations cue information in the knowledge base.

Chi, Feltovich, and Glaser (1981) found that physics experts classified physics

www.manaraa.com

115

problems on the basis of the underlying physics principles that were needed to solve

the problems, whereas novices tended to organize their knowledge around superficial

features in the problem statements. In this study, intermediate level programmers

organized their knowledge around both superficial and secondary features in the

problem statements. The intermediate level programmers of high inductive reasoning

skills (Gf) tended to organize their knowledge around solution strategies more than the

intermediate subjects of average Gf. More specifically, in Studies 2, 3, and 4,

intermediate level programmers exhibited signs of transfer from prior programming

languages (e.g., algorithms). However, the results were more striking for the

intermediate level programmers of high inductive reasoning skills (Gf). In contrast,

the intermediate level programmers of average G f displayed more novice type behavior

(e.g., tendency towards categorizing problems by surface features). Data gathered in

Study 4 on the basic approach and programming task were particularly striking in this

respect. Intermediate level programmers of average inductive reasoning skills

performed poorly in this novel situation.

Perhaps the intermediate level programmers with average inductive reasoning

skills have problem schemata that are more syntax-based. That is, perhaps their prior

programming knowledge is based more on the basic elements of language code.

Syntax knowledge is precise and arbitrary and, therefore, more easily forgotten.

Semantic knowledge, on the other hand, includes the meaning of a statement or a

program module. It is more or less independent of the syntactic knowledge of a

particular programming language. Perhaps the intermediate level programmers of high

inductive reasoning skills (Gf) have their programming knowledge base arranged more

around semantics than syntax and, consequently, perform better when learning a new

www.manaraa.com

116

programming language. Perhaps their knowledge base includes strategies for learning

new languages.

Another related hypothesis for the poor performance of the intermediate level

programmers of average Qf is that they do not recognize analogous problem solving

situations. Figure 12 shows one way to model the process of analogical transfer in

expert and novice problem solvers. If a previous solution is represented by surface

detail, then it will be retrieved by surface detail and hence will not aid the

problem-solving process. If the surface detail and the solution strategy are one and the

same, this does not pose a problem. However, in many situations the surface details

are only moderately related to solution strategies. The intermediate level programmers

of high inductive reasoning skills exhibited a greater tendency towards representing

problems by solution features and strategies.

Perhaps the intermediate programmers did not perform as well as anticipated

because of failure to retrieve relevant knowledge. Perkins, Schwartz, and Simmons

(1988) found that prompting students enabled them to recall and apply a command

correctly. The problem was not missing knowledge but "fragile knowledge", that is,

knowledge not tied to the conditions of its use.

Implications for Instruction

This exploratory study should be refined and aspects replicated before any strong

inferences are made concerning changing introductory programming language courses.

The preliminary results, however, do suggest a need for alternative methods of

teaching computer languages at the introductory level. Resnick (1976) reached a

conclusion that is relevant in this context.

www.manaraa.com

Fi
gu

re

12
.

Fr
am

ew
or

k
for

 C
on

ce
pt

ua
liz

in
g

Pr
ob

lem

So
lv

in
g

an
d

A
na

lo
gy

117

O Q Ol

ro t/> o. l=:

V o>

03 Q)

“ fl) 5 flj
= Q.-S i-
8 w £ £

I S"0

TO
b n C
r* ® TOm
To * £c OQ.

o
to® co c 1/3 O 03

E
TO 10 O)

TOJZJ TO
o TO03 3Q E>TO

<«- TO03 —
"D TOTO

o TOo>3 TOTOTO03
TOTO

c
033

TOTOCTO

0)
2 >: CO c 2 O
o ^ 2? a

' s * ■§ £.

(0 <1}* TO cl

•3 /j*<p ®oV>TO Q>a y s >
= 8 u> -b-

N
ot

e.
Fr

om

A
na

lo
gi

ca
l

Tr
an

sf
er

in

Ex
pe

rt
an

d
N

ov
ic

e
Pr

ob
lem

So

lv
er

s
by

L.

R
.

N
ov

ic
k,

19

86
.

U
np

ub
lis

he
d

do
ct

or
al

 d
is

se
rt

at
io

n,
 S

ta
nf

or
d

U
ni

ve
rs

ity
,

C
A

.

www.manaraa.com

118

...differences in learning ability-often expressed as intelligence or
aptitude—may in fact be differences in the amount of support individuals
require in making the simplifying and organizing inventions that produce
skilled performance. Some individuals will seek and find order in the most
disordered presentations; most will do well if the presentations (i.e., the
teaching routines) are good representations of underlying structures; still
others may need explicit help in finding efficient strategies for performance.
(p.78)

Perhaps a different approach to teaching a programming language to students of

average inductive reasoning skills would influence subsequent transfer to other

programming languages. It is important to note that the mean score on the inductive

reasoning task was 26.64 (S.D.= 3.67) for the 75 students who participated in

Study 1. The projected mean score for the students enrolled in the course prior to

Exam 1 was hypothesized to be a point or two lower. That is, the inductive reasoning

ability o f a typical student was probably at the upper end of the average range of

inductive reasoning abilities in this population of students. Therefore, the following

implications are relevant not just for a few students at the low end of the distribution

but are relevant for the majority of the students initially enrolled in the course.

Snow and Lohman assert that for lower Q f learners the instructional treatment

should be made explicit, direct, and structured. This type of approach provides

learners with the conceptual and procedural knowledge necessary for success. It gives

the learners the knowledge they may not be able to provide for themselves. Snow and

Lohman also recommend that instructional treatments for lower Q f learners should

include guided assembly and control during learning. "Direct training for low Gf

learners, conducted in parallel with instructional treatments, should aim at the

development of specified learning skills, and their flexible adaptation to real,

instructional learning problems" (p.56). Many of the following suggestions from

www.manaraa.com

119

educators and researchers may be useful for teaching introductory programming skills.

Perkins, Schwartz, and Simmons (1988) suggest a metacourse for enhancing the

learning of programming. The metacourse developed at Harvard's Educational

Technology Center consists of nine lessons "formulated to equip the students with

thinking and learning heuristics specialized to learning programming" (p. 159). For

example, this course teaches a systematic approach to decomposing problems and a

systematic framework for learning new commands. Research results indicate a

substantial positive effect of the metacourse on the programming performance of high

school students learning the BASIC programming language. The metacourse

participants outperformed the control groups in all major categories including

simple commands, hand execution, debugging, and program production.

Another suggestion for training was offered by deJong & Ferguson-Hessler

(1986). These investigators found that good novice problem solvers had their

knowledge arranged around problem types to a greater degree than poor problem

solvers. The results of Studies 2, 3, and 4 indicated that after a few weeks of

instruction in an introductory Pascal course, novice students with high inductive

reasoning had their knowledge arranged around problem types to a greater degree than

novice students of average inductive reasoning. When tested a few weeks later (Exam

1), novices of high G f as a group were better problem solvers than novices of average

Gf. DeJong and Ferguson-Hessler suggest that students should be taught to recognize

problem types. This appears to be a promising approach.

Another approach to teaching introductory computer programming has been

suggested by Dyck and Mayer (1989). Their research supports the use of a

sequential method of language instruction in which semantics are taught using natural

www.manaraa.com

120

language before the syntax of a new programming language is taught. Some computer

scientists specializing in the field of programming language strongly support a more

semantic approach to teaching introductory computer programming (C. Haynes,

personal communication, June, 1988).

Conclusions

Inductive reasoning skills develop with education and experience (Snow &

Lohman, 1988). The computer science curriculum can encourage their development

by teaching novel problem-solving skills in the context of teaching computer

programming. This is particularly important in the light of recent reseach which

examines the cost of expertise-rigidity. Frensch and Sternberg (1987) claim that "the

same cognitive mechanisms that produce experts' superior performance on familiar

tasks also hinder their performance when task demands change" (p.l). Perkins (1988)

recently proposed a conception of expertise that includes both "expertise" in a domain

and flexible thinking. For Perkins, understanding a domain includes a "flexible grasp

of the deep structures of the domain and justification, and a flexible capacity to deploy

domain knowledge in unconventional cases" (p.3).

Some leaders in the field of computer science research have already begun

exploring ways to foster flexible thinking. Soloway, Spohrer, and Littman (1988)

suggest methods for teaching college students to explore alternative ways of solving

the same programming problem. They present heuristics that can be taught to students

"so that they can productively control their problem solving processes and avoid

becoming locked into a single approach" (p. 137). Other approaches have been

advanced by researchers with different perspectives (e.g., Nickerson, Perkins, &

www.manaraa.com

121

Smith, 1985). The studies reported in this dissertation do not address the issue of

how to develop such thinking skills. But the studies reported here do show the

importance of such skills in learning a new programming language. Experience in

computer programming is also important, although clearly not as important as

inductive reasoning skills during the early stages of learning a new language. When

inductive reasoning skills were pitted against programming experience, inductive

reasoning generally was the more important variable influencing performance. This

finding was true for tasks involving (a) categorizing and representing problems,

(b) schema development, and (c) solution plans and programming achievement. Of

course, such conclusions cannot be easily generalized, given the many limitations of

these studies. On the other hand, although samples here were small, subjects were
*

systematically selected to be representative of the full range of experience and ability

found in the original class. Thus, there are both strengths and limitations here.

Need for Further Research

Further research is needed on the differential effects of inductive reasoning and

computer programming experience on knowledge representation and achievement in

computer programming. Relevant issues for future study include:

1. How can novice and experienced programmers organize their knowledge so

that it has a deep generic structure for facilitating the learning of subsequent

programming languages?

2. How can programmers best organize their knowledge in preparation to solve

novel problems?

www.manaraa.com

122

3. What strategies can be taught in the context of a programming course that

cultivate flexible thinking in the domain?

4. How can novice and intermediate programmers use metaphor and analogy to

transfer information and procedures from one domain to another?

It is hoped that this dissertation research and the suggested research will help

towards a process theory of aptitude for learning from instruction.

www.manaraa.com

123

REFERENCES

Adelson, B. (1981). Problem solving and the development of abstract categories in
programming languages. Memory and Cognition. £(4), 422-433.

Adelson, B. (1984). When novices surpass experts: The difficulty of a task may
increase with expertise. Journal of Experimental Psychology. Learning.
Memory, and Cognition. M 3) , 483-495.

Alspaugh, C. A. (1972). Identification of some components of computer
programming aptitude. Journal of Research in Mathematics Education. 3.
89-98.

Anderson, J. R. (1976). Language, memory and thought. Hillsdale, NJ: Erlbaum.

Atwood, M. E., Jeffries, R., & Poison, P.G. (1980). Studies in plan construction. I:
Analysis of an extended protocol (Report No. SAI-80-028 DEN). Englewood,
CO: Science Applications, Inc.

Balzer, R., Goldman, N., & Wile, D. (1977). On the use of programming knowledge
to understand informal process descriptions. Prodeedings of Pattern Directed
Inference Workshop in Special Interest Group in Artifical Intelligence
Newsletter. 63.

Barstow, D. R. (1977). A knowledge-based system for automatic program
construction. Proceedings of the Fifth International Joint Conference on
Artificial Intelligence. 382-388.

Blume, G. W. (1984, April). A review of research on the effects of computer
programming on mathematical problem solving. Paper presented at the annual
meeting of the American Educational Research Association.

Brooks, R. E. (1982). A theoretical analysis of the role of documentation in the
comprehension of computer programs. Proceedings of the Conference on
Human Factors in Computer Systems.

Butcher, D., & Muth, W. (1985). Predicting performance in an introductory
computer science course. Communications of the Association for Computing
Machinery. 2S, 263-268.

Cetron, M„ & O'Toole, T. (1982). Encounters with the Future: A Forecast of life
into the 21st Century. New York: McGraw-Hill.

www.manaraa.com

124

Chase, W. D., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology,
4,55-81.

Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and
representation of physics problems by experts and novices. Cognitive Science.
5, 121-152.

Clement, J. (1982). Analogical reasoning patterns in expert problem solving.
Proceedings of the Fourth Annual Conference of the Cognitive Science Society.
Ann Arbor, MI: University of Michigan.

Cronbach, L. J., & Snow, R. E. (1977). Aptitudes and instructional methods: A
handbook for research on interactions. New York: Irvington.

Dalbey, J. (1983). Spider World reference manual and teacher's guide. (ACCEL
Report). University of California, Berkley.

Dalbey, J., & Linn, M. C. (1985). The demands and requirements of computer
programming: A literature review. Journal of Educational Computing Research.
1,253-274.

deGroot, A. (1966). Perception and memory verus thought: Some old ideas and
recent findings. In B. Kleinmuntz (Ed.), Problem solving. New York: Wiley.

deJong, T., & Ferguson-Hessler, M. G. (1986). Cognitive structures of good and
poor novice problem solvers in physics. Journal of Educational Psychology.
2fi(4), 279-288.

Dyck, J., L. & Mayer, R. E. (1989). Teaching for transfer of computer program
comprehension skill. Journal of Educational Psvcholoev. § 1(1). 16-24.

Egan, D. E., & Schwartz, B. J. (1979). Chunking in recall of symbolic drawings.
Memory & Cognition. 2, 149-158.

Estes, W. K. (1982). Learning, memory and intelligence. In R.J. Sternberg (Ed.),
Handbook of Human Intelligence (pp. 170-224). MA: Cambridge University
Press.

Fenker, R. M. (1975). The organization of conceptual materials: A methodology for
measuring ideal and actual cognitive structures. Instructional Science. 4, 33-57.

Ferguson, G. A. (1954). On learning and human ability. Canadian Journal of
Psychology. S., 95-112.

Ferguson, G. A. (1956). On transfer and the abilities of man. Canadian Journal of
Psychology. 10(3) 121-131.

www.manaraa.com

125

Frensch, P. A., & Sternberg, R. J. (1987). Expertise and flexibility: The costs of
expertise. Manuscript submitted for publication.

Glaser, R. (1980). General discussion: Relationships between aptitude, learning, and
instruction. In R.E. Snow, P. A. Federico, & W. E. Montague (Eds.),
Aptitude, learning, and instruction. Vol. 2: Cognitive process analysis of
learning and problem solving (pp. 309-326). Hillsdale, NJ: Erlbaum.

Hayes, J. R., & Simon, H. A. (1977). Psychological differences among problem
isomorphs. In N.J. Castellan, Jr., D.V. Pisoni, & G.R. Potts (Eds.), Cognitive
theory. Vol. 2 (pp. 21-41). Hillsdale, NJ: Erlbaum.

Holland, J. H., Holyoak, K. J., Nisbestt, R. E., & Thagard, P. R. (1986).
Induction: processes o f inference, learning and discovery. MA: MIT Press.

Hunt, J. M. (1961). Intelligence and experience. New York: The Ronald Press.

Kovalina, J., Wileman, S. A. & Stephans, L. J. (1983). Math proficiency: a key to
success for computer science students. Communications of the Association for
Computing Machinery, 26. 377-382.

Kurtz, B. B. (1980). Investigating the relationship between the development of
abstract reasoning and performance in an introductory programming course.
Special Interest Group Computer Science Education Bulletin. 12. 110-117.

Larkin, J. H. (1977). Problem solving in phvsics. Unpublished manuscript,
University of California, Group in Science and Mathematics Education and
Department o f Physics, Berkeley.

Linn, M.C. (1985). The cognitive consequences of programming instruction in
classrooms. Educational Researcher. 14(5). 14-29.

Lucas, H. D., & Kaplan, R. B. (1974). A structured programming experiment. The
Computer Journal. 19(2). 136-138.

Mayer, R. E. (1981). The psychology o f how novices learn computer programming.
Computing Surveys. 13(1). 121-141.

Mayer, R. E. (1983). Thinking, problem solving, cognition. San Francisco: W.H.
Freeman & Co.

Mayer, R. E. & Dyck, J. L. (1984). Work problem translation test. Unpublished
manuscript, University of California, Department of Psychology, Santa Barbara.

Mayer, R. E., Dyck, J. L„ & Vilberg, W. R. (1985). A three minute mathematics test
that predicts success in learning BASIC. Paper presented at the annual meeting
of the American Educanonal Research Association, Chicago.

www.manaraa.com

126

McDermott, J., & Larkin, J. H. (1978). Re-representing textbook phvsics problems.
Proceedings of the 2nd NationalConference, the Canadian Society for
Computation Studies of Intelligence. Toronto: University of Toronto Press.

McKeithen, K. B. Assessing knowledge structures in novice and expert
programmers. Unpublished doctoral dissertation. University of Michigan,
1979.

McKeithen, K. B., Reitman, J. S., Rueter, H. H., & Hirtle, S. D. (1981).
Knowledge organization and skill differences in computer programmers.
Cognitive Psychology, 12, 307-325.

Miller, M. L., & Goldstein, I. P. (1977). Problem solving grammers as formal tools
for intelligent CAI. Proceedings of Association for Computing Machinery '77.

Miller M. L., & Goldstein, I. P. (1977). Structured planning and debugging.
Proceedings of the Fifth International Joint Conference on Artificial Intelligence
(pp. 773-779). Cambridge, MA.

Miller, M. L„ & Goldstein, I. P. (1979). Planning and debugging in elementary
programming. In P. H. Winston & R. H. Brown (Eds.), Artifical Intelligence:
An MIT Perspective Vol. 1 (dp. 317-337). Cambridge, MA: MIT Press.

Newell, A., & Simon, H. (1972). Human Problem Solving. Englewood Cliffs, NJ:
Prentice-Hall.

Nickerson, R., Perkins, D. N., & Smith, E. (1985). The teaching of thinking.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Novick, L. R. (1986). Analogical transfer in expert and novice problem solvers.
Unpublished doctoral dissertation, Stanford University, CA.

Pea, R. D., & Kurland, D. M. (1983). On the cognitive prerequisites of learning
computer programming. Project Report to the National Institute of Education.
New York: Bank Street College of Education, Center for Children and
Technology.

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer
programming. New Ideas in Psvchoiogv. 2(2). 137-168.

Pennington, N. (1982). Cognitive components of expertise in computer
programming: A review of the literature (Tech. Rep. No. 46). Ann Arbor, MI:
University of Michigan.

Perkins, D. N. (1988, April). Understanding and expertise: The double helix of
mastery. Paper presented at the meeting of the American Educational Research
Association, New Orleans.

www.manaraa.com

127

Perkins, D. N., & Salomon, G. (1989). Are cognitive skills context-bound?
Educational Researcher. 18. 16-25.

Perkins, D. N., Schwartz, S., & Simmons, R. (1988). Instructional strategies for the
problems of novice programmers. In R. E. Mayer (Ed.), Teaching and learning
computer programming 1pp. 137-152). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Peterson, C. G., & Howe, T. G. (1979). Predicting academic success in the
introduction to computers. Association for Education Data Systems Journal. 12,
182-191.

Polya, G. (1973). How to solve it: A new aspect of mathematical method (2nd ed.).
NJ: Princeton University Press.

Raven, J. C. (1977). Advanced progression matrices. Sets 1 and II. New York:
Psychological Corporation.

Raven, J. C., Court, J. H. & Raven, J. (1977) Manual for Raven's Progressive
Matrices and Vocabulary Scales. London: Lewis & Co. Ltd.

Reif, F. (1979). Cognitive mechanisms facilitating human problem solving in a
realistic domain: The example of phvsics. Unpublished manuscript.

Reitman, J. A. (1976). Skilled perception in Go: Deducing memory structures from
inter-response times. Cognitive Psychology. £, 336-356.

Resnick, L. B. (1976). Task analysis in instructional design: Some cases from
mathematics. In D. Klahr (Ed.), Cognition and instruction (pp. 51-80).
Hillsdale, NJ: Lawrence Erlbaum Associates.

Ricardo, C. M. (1983). Identifying student entering characteristics desirable for a First
course in computer programming. Unpublished doctoral dissertation, Columbia
University.

Rich, C. A. (1981). Formal representation for plans in the programmer's apprentice.
Proceedings of International Joint Conference on Artificial Intelligence (pp.
1044-1052). Vancouver, BC.

Rich, C., & Shrobe, H. E. (1979). Design of a programmer's apprentice. In P.H.
Winston & R.H. Brown (Eds.), Artificial Intelligence: An MIT perspective
(pp.137-173). Cambridge, MA: MIT Press.

Rumelhart, D. E.(1981). Schemata; The building blocks of cognition. In R. Spiro,
D. Bruce, & W. Brewer (Eds.), Theoretical issues in reading comprehension.
Hillsdale, NJ: Erlbaum.

www.manaraa.com

128

Rumelhart, D. E., & Norman, D. A. (1978). Accretion, tuning, and restructuring:
Three modes o f learning. In J. W. Cotton and R. Klatzky (Eds.), Semantic
factors in cognition (pp. 37-53V Hillsdale, NJ: Erlbaum.

Salomon, G., & Perkins, D. N. (1987). Transfer of cognitive skills from
programming: when and how? Journal of Educational Computing Research.
2(2), 149-169.

SAS Institute Inc. (1985). SAS user's guide: Statistics (5th ed.). Cary, NC: SAS
Institute Inc.

SAS Institute Inc. (1986). SUGI supplemental library user's guide (5th ed.). Cary,
NC: SAS Institute Inc.

Sauter, V. L. (1986). Predicting computer programming skill. Computer Education.
M 2) , 299-302.

Shavelson, R. J., & Stanton, G. C. (1975). Construct validation: Methodology and
application to three measures of cognitive structure. Journal of Educational
Measurement. 12(2), 67-85.

Sheppard, S. B., Curtis, B., Milliman, P., & Love, T. (1979). Modem coding
practices and programmer performance. Institute of Electrical and Electronic
Engineers. 41-49.

Shneiderman, B. (1977). Measuring computer program quality and comprehension.
International Journal of Man-Machine Studies. 2,465-478.

Shneiderman, B. (1980). Software psychology: Human factors in computer and
information systems. MA: Winthrop.

Shneiderman, B., & Mayer, R. E. (1979). Syntactic/semantic interactions in
programmer behavior: A model and experimental results. International Journal
o f Computer and Information Sciences. &, 219-238.

Silver, E. A. (1979). Student perceptions of relatedness among mathematical verbal
problems. Journal for Research in Mathematics Education. M 195-210.

Simon, H. A. (1978). Information-processing theory of human problem-solving. In
W. K Estes (Ed.), Handbook of learning and cognitive processes.Vol. 4 (pp.
271-295). Hillsdale, NJ: Erlbaum.

Snow, R. E. (1980). Aptitude processes. In R. E. Snow, P. Federico, & W. E.
Montague (Eds.), Aptitude, learning and instruction: Vol. 1. Cognitive process
analysis of aptitude (pp. 27-63). Hillsdale, NJ: Erlbaum.

www.manaraa.com

129

Snow, R. E. (1981). Toward a theory of aptitude for learning: Fluid and crystallized
abilities and their correlates. In M.P. Friedman, J. P. Das, & N. O'Connor
(Eds.). Intelligence and learning (pp. 345-3621. New York: Plenum.

Snow, R. E„ & Lohman, D. F. (1984). Toward a theory of cognitive aptitude for
learning from instruction. Journal of Educational Psychology. 26(3), 347-376.

Snow, R. E., & Lohman, D. F. (1988). Implications of cognitive psychology for
education measurement. In R. Linn (Ed.), Educational Measurement (3rd ed.)
(pp. 263-331). New York: Macmillan.

Snow, R. E., & Yalow, E. (1982). Education and intelligence. In R J . Sternberg
(Ed.) Handbook of Human Intelligence (pp.493-585). New York: Cambridge
University Press.

Soloway, E., Ehrlich, K., Bonar, J., & Greenspan, J. (1982). What do novices
know about programming? In A. Badie & B. Shneiderman (Eds.), Directions in
Human Computer Interaction (pp. 27-54). Norwood, NJ: Ablex.

Soloway, E., Spohrer, J., & Littman, D. (1988). E unum pluribus: Generating
alternative designs. In R. E. Mayer (Ed.), Teaching and learning computer
programming (pp. 152-178). Hillsdale, NJ: Lawrence Erlbaum Associates.

Soloway, E., & Woolf, B. (1980). Problems, plans and programs. Special Interest
Group in Computer Science Education Bulletin. 12(1). 16-24.

Taylor, H. G., & Mounfield, L. C. (1989). The effect o f high school computer
science, gender, and work on success in college computer science. Special
Interest Group in Computer Science Education Bulletin. 21,195-198.

Thro, M. P. (1978). Relationships between associative and content structure of
physics concepts. Journal of Educational Psychology. 70.971-978.

Waters, R. C. (1979). A method for analyzing loop programs. Institute of Electrical
and Electronic Engineers Transactions on Software Engineering. SE-5.
237-247.

Wertheimer, M. (1959). Productive thinking (enlarged edition). New York: Harper.

Wills, J. A. (1982). Arc programming and natural language skills related?
Communications of the Association for Computing Machinery. 25, 221.

www.manaraa.com

130

APPENDIX A

STUDY 1: LEARNER CHARACTERISTICS QUESTIONNAIRE

1. Is this your first programming language? Yes = 0 , No = 9.

2. Is English your native language? Yes = 0, No = 9.

3. What is your current student status? Freshman = 0, Soph. = 1, Jr. = 2, Sr. = 3,

Graduate = 4, Special = 5.

4. What is your major? Computer Science = 0, Math = 1, Natural Science = 2,

Social Science = 3, Business = 4, Education = 5, Humanities - 6, Arts = 7,

Health Science = 8, Other = 9.

5. What is your grade-point average? (1.5-1.9=0) (2.0-2.2=l) (2.3-2.5=2)

(2.6-2.8=3) (2.9-3.1=4) (3.2-3.4=5) (3.5-3.6=6) (3.7 3.8=7) (3.9-4.0=8)

6. What was your senior high school (grades 10-12) grade-point average?

(1.5-1.9=0) (2.0-2.2=l) (2.3-2.5.=2) (2.6-2.8=3) (2.9-3.1=4) (3.2-3.4=5)

(3.5-3.6=6) (3.7-3.8=7) (3.9-4.0 =8)

7. How many semesters of high school level math courses have you completed?

(If more than 10, just mark 9).

8. How many semesters of college level math courses have you completed? (If

more than 10, just mark 9.)

9. Is this course a high priority for you this semester? Low = 0, Med = 4, High = 9

(only use 0, 4, or 9).

10. Are you planning to take 22C: 17 (Advanced Programming with Pascal)?

Yes = 0, No = 9.

www.manaraa.com

131

1 1 . Do you expect to use a programming language in your future employment?

Yes = 0, No = 9.

12. How often do you use a personal computer? Never = 0, Sometimes = 1,

Frequently = 2.

13. Prior to this course, have you used a word processor? Yes = 0, No = 9.

14. For research purposes, may we have access to your ACT or SAT scores?

Yes = 0, No = 9.

15. For research purposes, may we have access to your scores on assignments and

tests in this course? Yes = 0, No = 9.

FOR PEOPLE WITH PREVIOUS COMPUTER PROGRAMMING EXPERIENCE

16. Prior to this course, have you studied top-down design (structured design of

programming)? Yes = 0, No = 9.

17. How did you learn about top-down design (book, programming course)? Please

be specific. Write out your answer.

The following directions pertain to questions 18 through 24:

* For each computer language you have studied in a course, indicate the number of

semesters using circles 0 through 6.

* If you have studied a particular language for three weeks or less in a course or

workshop setting, fill in circle 8.

* If you taught yourself the language, fill in circle 9.

www.manaraa.com

132

Laneuaee Level

18. BASIC High School

19. BASIC College

20. FORTRAN High School

21. FORTRAN College

22. COBOL High School

23. COBOL College

24. LOGO (Fill in level)

25. Please specify other programming languages you have learned:

Language How did vou learn it? Indicate vour level of proficiency?

Self-taught or course? Beginning or
Intermediate or Advanced

26. Indicate the languages in which you have had work experience.

www.manaraa.com

133

APPENDIX B

STUDY 2: TABLES FOR REGRESSION ANALYSES FOR EXAM 2 AND FINAL

Table 26. Summary of Regression Analysis for Exam 2

Model - F Value PR>F R-Square

EXAM 2 = 6.79 .0008 .33
Inductive Reasoning,
Computer Programming

Experience,
ACT Math

Note: N = 46

Table 27. Contributions of Each Variable in the Model for Predicting Exam 2 Scores

Variable Type III SS F Value PR>F

Inductive Reasoning 2241.13 4.62 .04
Computer Programming 583.35 1.20 .28

Experience
ACT Math 3626.56 7.47 .01

Note: N = 46

www.manaraa.com

134

Table 28. Summary of Regression Analysis for Final Exam

Model

Final Exam =
Inductive Reasoning,
Computer Programming

Experience,
ACT Math

F Value PR>F

1.63 .20

R-Square

.10

Note: N = 46

Table 29. Contributions of Each Variable in the Model for Predicting Final Exam
Scores

Variable Type III SS F Value PR>F

Inductive Reasoning 178.34 0.08 .78
Computer Programming

Experience
6767.79 2.99 .09

ACT Math 4413.46 1.95 .17

Note: N = 46

www.manaraa.com

135

APPENDIX C

STUDY 2: PROBLEM STATEMENTS FOR SORTING TASK

For both parts 1 and 2, the problem numbers and letters are keyed to the problems in

the multidimensional scaling figures in Study 2.

PART 1: Problems Organized bv Surface Features

Money Related

K. A certain Swiss bank has ten customers, each with a unique account number.

Write a program to read in ten pairs of account numbers and balances. Then your

program should print them out so that an account with a larger balance is always

listed before any of the accounts with smaller balances.

5. Write a program that computes the minimum number of coins and bills needed to

make change for a particular purchase. The cost of the item and the amount

tendered should be read as data values. Your program should indicate how many

coins and bills of each denomination are needed for change. Use the following

denominations.

Coins: .05, .10, .25

Bills: $1, $5, $10

U. The banks in your area all advertise different interest rates for various kinds of

long-term savings certificates. The advertisements state the minimum interest

period for the certificate (e.g., 2 years, 4 years, etc.) and the yearly interest rate.

Write a program which, given an investment period in years, a yearly interest rate

www.manaraa.com

136

in percent, and an amount of deposit in dollars and cents, will compute and print

the yearly interest amount and the value of the certificate at the end of each year of

the investment period.

O. Write a program to calculate the simple interest on a loan of less than one year's

duration. The input parameters are the amount of the loan, the number of days it

will be lent, and the interest rate.

E. Write a program which takes the current year, the current cost of a candy bar in

dollars, and an annual inflation rate, and prints a table showing how much a

candy bar will cost for each year during the next quarter century.

Geometry

Q. Given the values for the coefficients a, b, c, and d in the polynomial function:

f(x) = ax3 + bx2 + cx + d as well as two values for x such that f(xO) < 0 and

f(x l) > 0, locate the point at which the function crosses the X axis (where

f(x) = 0).

R. Write a program to read in the Cartesian coordinates for 16 points in space. Then

the program should print out a neat looking table of the points, with the first point

listed first, and the rest of the points listed in order of their proximity to the first

one.

S. Given the number of vertices of a polygon and a series of Cartesian coordinates

for its vertices, calculate its perimeter.

P. Write a program to read in the Cartesian coordinates for three points on a plane

and then print 'TRUE' if they are collinear, or ’FALSE' if they are not.

7. Write a program to determine the length of the hypotenuse of a right triangle,

given the lengths of the the other two sides.

www.manaraa.com

137

Numbers

D. Write a program which reads a positive whole number N and determines whether

or not N is a prime number. The program prints TRUE' if N is prime and

'FALSE' otherwise.

1. Given R, a positive real number, and N, a whole number greater than two, print

a list of the vertices of an N sided polygon inscribed inside the circle with radius

R and center at the origin.

T. Write a program that reads in 10 numbers; after reading each one, it should print

the funny sum computed by the following rule: If the last number was greater

than this one, then subtract this number from the previous funny sum, otherwise

add this number to the funny sum. At the start, the funny sum is equal to zero.

J. Write a program to estimate cube roots to four decimal places. (The upper and

lower limits for the value of the cube root of N are N and N / 3.)

L. Write a program which accepts two positive integers, X and Y, and prints XY (X

to the Power Y).

N. Write a program which reads in two integers, each up to 40 digits long, and prints

their product.

4. Write a program which reads in two integers, each up to 80 digits long, and prints

their sum.

F. Write a program which reads a positive integer N, and prints out a list of the

squares and cubes of all the integers from 1 to N inclusive.

6. Write a program which reads in two 5 by 5 matrices of numbers, multiplies them,

and prints out the resulting matrix.

www.manaraa.com

138

Letters/Words

3. Print all of the possible three letter words which contain at least one vowel and

one consonant.

2. Write a program which reads a line of text and prints out each of the words

correctly, but beginning with the last one entered. For the previous sentence it

would print: '.entered one last the with beginning but correctly words the of

each out prints and text of line a reads which program a Write'.

8. Write a program which reads in 20 words and prints them out in alphabetical

order.

9. Write a program to read in a sample of natural-language text and print out a table

showing the different alphabetic characters which appeared in the text along with

the number of times each one appeared. Please have the table list the most

frequently occuring characters first.

A. Write a program which reads in 100 characters and writes out a table showing the

number of times each of the 26 letters of the alphabet appears.

G. Write a program which reads in a line of text and prints it out backwards. For the

previous sentence it would print: ’.sdrawkcab tuo ti stnirp dna txet fo enil a ni

sdaer hcihw margorp a etirW’.

M. Write a program which reads a single line of characters and writes them out,

replacing every sequence of consecutive blanks by a single blank.

C. Write a program to determine whether a five-letter word is a palindrome. A

palindrome reads the same backwards and forwards.

I. Given a string of up to 80 characters, transform and print it according to the

www.manaraa.com

139

following rule: If the current character is a caret (A) then convert the next

character to upper case, otherwise print the current character.

H. Write a program to print all the members of the character set available on your

computer keyboard, together with their ordinal numbers.

B. Write a program which reads in 150 names and addresses and organizes them in

numerical order according to zipcode. Next, within each zipcode category

arrange the names in alphabetical order.

PART 2; Problems Organized bv Problem Types (Solution Oriented!

Simple

7. Write a program to determine the length of the hypotenuse of a right triangle,

given the lengths o f the other two sides.

O. Write a program to calculate the simple interest on a loan of less than one year's

duration. The input parameters are the amount of the loan, the number of days it

will be lent, and the interest rate.

P. Write a program to read in the Cartesian coordinates for three points on a plane

and then print TRUE" if they are collinear, or 'FALSE' if they are not.

Loop

I. Given R, a positive real number, and N, a whole number greater than two, print a

list of the vertices of an N-sided polygon inscribed inside the circle with radius R

and center at the origin.

4. Write a program which reads in two integers, each up to 80 digits long, and prints

their sum.

D. Write a program which reads a positive whole number N, and determines whether

www.manaraa.com

140

or not N is a prime number. The program prints TRUE’ if N is prime and

'FALSE' otherwise.

C. Write a program to determine whether a five-letter word is a palindrome. A

palindrome reads the same backwards and forwards.

E. Write a program which takes the current year, the current cost of a candy bar in

dollars, and an annual inflation rate, and prints a table showing how much a

candy bar will cost for each year during the next quarter century.

F. Write a program which reads a positive integer N, and prints out a list of the

squares and cubes of all the integers from 1 to N inclusive.

G. Write a program which reads in a line of text and prints it out backwards. For the

previous sentence it would print: ’.sdrawkcab tuo ti stnirp dna txet fo enil a ni

sdaer hcihw margorp a etirW'.

H. Write a program to print all the members of the character set available on your

computer keyboard, together with their ordinal numbers.

L. Write a program which accepts two positive integers, X and Y, and prints (X

to the power Y).

S. Given the number of vertices of a polygon and a series of Cartesian coordinates

for its vertices, calculate its perimeter.

U. The banks in your area all advertise different interest rates for various kinds of

long-term savings certificates. The advertisements state the minimum interest

period for the certificate (e.g., 2 years, 4 years, etc.) and the yearly interest rate.

Write a program which, given an investment period in years, a yearly interest rate

in percent, and an amount of deposit in dollars and cents will compute and print

www.manaraa.com

141

the yearly interest amount and the value of the certificate at the end of each year of

the investment period.

Multiple Loops

2. Write a program which reads a line of text and prints out each of the words

correctly, but beginning with the last one entered. For the previous sentence it

would print: ’.entered one last the with beginning but correctly words the of each

out prints and text of line a reads which program a Write'.

3. Print all of the possible three letter words which contain at least one vowel and

one consonant.

5. Write a program that computes the minimum number of coins and bills needed to

make change for a particular purchase. The cost of the item and the amount

tendered should be read as data values. Your program should indicate how many

coins and bills of each denomination are needed for change. Use the following

denominations.

Coins: .05, .10, .25

Bills: $1, $5, $10

6. Write a program which reads in two 5 by 5 matrices of numbers, multiplies them,

and prints out the resulting matrix.

N. Write a program which reads in two integers, each up to 40 digits long, and prints

their product.

Sorts

8. Write a program which reads in 20 words and prints them out in alphabetical

order.

www.manaraa.com

142

9. Write a program to read in a sample of text and print out a table showing the

different alphabetic characters which appeared in the text along with the number

of times each one appeared. Please have the table list the most frequently

occuring characters first.

A. Write a program which reads in 100 characters and writes out a table showing the

number of times each of the 26 letters of the alphabet appears.

B. Write a program which reads in 150 names and addresses and organizes them in

numerical order according to zipcode. Next, within each zipcode category

arrange the names in alphabetical order.

K. A certain Swiss bank has ten customers, each with a unique account number.

Write a program to read in ten pairs of account numbers and balances. Then your

program should print them out so that an account with a larger balance is always

listed before any of the accounts with smaller balances.

R. Write a program to read in the Cartesian coordinates for 16 points in space. Then

the program should print out a neat looking table of the points, with the first point

listed first, and the rest of the points listed in order of their proximity to the first

one.

State Machine

I. Given a string of up to 80 characters, transform and print it according to the

following rule: If the current character is a caret (A) then convert the next

character to upper case, otherwise print the current character.

M. Write a program which reads a single line of characters and writes them out,

replacing every sequence of consecutive blanks by a single blank.

T. Write a program that reads in 10 numbers; after reading each one, it should print

www.manaraa.com

143

the funny sum computed by the following rule: If the last number was greater

than this one, then subtract this number from the previous funny sum, otherwise

add this number to the funny sum. At the start, the funny sum is equal to zero.

Reduction

J. Write a program to estimate cube roots to four decimal places. (The upper and

lower limits for the value of the cube root of N are N and N/3.)

Q. Given the values for the coefficients a, b, c, and d in the polynomial function:

f(x) = ax3 + bx2 + cx + d as well as two values for x such that f(xO) (0 and f (x)

> 0, locate the point at which the function crosses the X axis (where f(x) = 0).

www.manaraa.com

144

APPENDIX D

STUDY 2: SUBJECT RESPONSE FORM FOR SORTING TASK

Name:_________________________ I.D.#____________________

Experience Category: Novice or Experienced (Circle one.) If experienced, please

explain:

Directions: Enclosed are 30 typical introductory computer programming

problems. You will not be asked to write programs. Instead, your task is to sort these

computer programming problems into groups based on similarities of solution. In

other words, sort these problems into groups on the basis of how you would solve

them.

Note: Use only five categories.

Time limit: 25 minutes for the sorting aspect of the task (spend at least 15

minutes on this task).Allow 5-10 minutes to complete the answer sheet. Total

time equals 30-35 minutes (maximum).

Your Name

Record your Starting Time________

Record your Finishing Time_______

1. Finish Sorting Task____________

2. Finish Filling Out Form________

Record answ ers below

Category A Member (list by numbers).

www.manaraa.com

145

Give category A a name (5 words max.).

Why did you give category A this name?

Category B Members (list by numbers).

Give category B a name (5 words max).

Why did you give category B this name?

Category C Members (list by numbers).

Give category C a name (5 words max.)

Why did you give category C this name?

Category D members (list by numbers).

Give category D a name (5 words max.)

Why did you give category D this name?

Category E members (list by numbers).

Give category E a name (5 words max.)

Why did you give category E this name?

Indicate the five problems which were most difficult to categorize.

www.manaraa.com

146

APPENDIX E

STUDY 2: SORTING TASK: NUMBER OF CATEGORIES FOR ALL GROUPS

Table 30. Sorting Task: Number of Categories for All Groups

Natural Language
Problem Features Problem Process

fcUtt
£ -M.
3 | ’S -
^ ^ e *Su M r cd
^ *5 -8 s
O
1 EP i . i
CO (5 m CO

Novice (N=8) 10 5 2 4 6 5
High G f

Novice (N=9) 25 6 2 4 4 3
Average Gf

Advanced Novice (N=14) 1 9 7 1 7 6 7 5
High G f

Advanced Novice (N=10) 22 4 1 3 7 2
Average Gf

Intermediate (N=20) 44 4 2 11 5 9 4
High Gf

Intermediate (N=4) 10 2 2 1 1
Average Gf

Advanced Intermediate (N = ll) 1 5 3 1 4 3 2 5
High Gf

Intermediate (N=5) 10 1 5 1
Average Gf

c

</5
JZ e
4—1

£ 5 •a
2

X a c
i j E o

"E, o
B o oa 3o a

www.manaraa.com

147

Table 30—continued

Programming Knowledge

Problem Features Problem Process

&>
0 ©

J3 o
Q &. PQ

JSw

- a -sIS <SS H 3
b =2 &p. rt 3
O Q O

C/i

C/3
3rt
Q

C/i

I
(J

00
a03
Q

Novice (N=8)
High Gf

Novice (N=9)
Average Gf

Advanced Novice (N=14)
High Gf

Advanced Novice (N=10)
Average Gf

Intermediate (N-20)
High Qf

Intermediate (N=4)
Average G f

Advanced Intermediate (N=l 1)
High Qf

Advanced Intermediate (N=5)
Average Gf

2

1

2

1

2

1

2

2

1

7

1

3

1

1 2

3

1 1
Pl

us
 M

an
ip

ul
at

io
n

www.manaraa.com

Table 30-continued

Programming Knowledge

Problem Process

c/i
O h

j
P 'S ="53

C/1a>
2

E
-5

E
•S

x:
£
P £

■gtm
•c
So

pp
<

C/i(D 1cti
< < <u 3“O

O

"3
Ecn .J

_c
3

O

0

1

IS-
Eo
U

u
o
2

Novice (N=8)
High G f

Novice (N=9)
Average Gf

Advanced Novice (N=14)
High G f

Advanced Novice (N-10)
Average Gf

Intermediate (N=20)
High Gf

Intermediate (N=4)
Average Gf

Advanced Intermediate (N = ll)
High Q f

Advanced Intermediate (N=5)
Average Gf

2

1

1

1 1

1 3

2 3 2

I 6 1 1 2 3

www.manaraa.com

149

APPENDIX F

STUDY 3: NUMBER OF NATURAL AND COMPUTER LANGUAGE
CONCEPTS AND RATINGS: DATA FOR INDIVIDUAL SUBJECTS

Table 31. Number of Natural and Computer Language Concepts and Ratings for
Each Subject (£)

Inductive Reasoning
Average High

Intermediate Level
Programmers _________________________ _______________________

£.1 S2 S3 Means ”S4 S3 16 Means
No. Natural
Language Concepts 27.00 1.00 84.00 37.33 20.50 5.50 8.00 11.33

No. Computer
Language Concepts 34.00 37.00 58.00 43.00 42.50 88.50 48.00 59.67

Ratings 1-2
Natural Language 1.43 1.00 1.31 1.25 1.37 1.38 1.25 1.33

Ratings 3-5
Computer Concepts 3.08 3.54 3.25 3.29 3.58 3.26 3.31 3.38

Inductive Reasoning
Intermediate Level Average High
P r o g r a m m e r s ______________ __________ _______________________

£7 §8 S9 Means £10 £11 £12 Means
No. Natural
Language Concepts 19.00 47.00 61.00 42.33 52.50 7.00 26.00 28.50

No. Computer
Language Concepts 58.00 34.00 15.00 35.67 70.50 7.00 75.00 50.83

Ratings 1-2
Natural Language 1.27 1.48 1.30 1.35 1.48 1.33 1.42 1.41

Ratings 3-5
Computer Concepts 3.33 3.39 3.12 3.28 3.84 3.40 3.30 3.51

www.manaraa.com

150

APPENDIX G

STUDY 4: NUMBER OF NATURAL LANGUAGE AND
COMPUTER CONCEPTS PER LABEL FOR EACH GROUP

Table 32. Number of Natural Language and Computer Concepts Per Label for Each
Group

Novice Interm ediate Level
Program m ers Program m ers

Inductive Reasoning Inductive Reasoning
Average High Average High

Money
O perations

Simple Definitions
Complex Definitions

and Examples

1
0

6.5
1

4
0

7.5
0.5

Simple Definitions 0 0 2 3.5
Geom etry Complex Definitions 0 0 0 1

and Examples

Simple Definitions 3 3 2 7
Easy M ath Complex Definitions 1 2 1 1

and Examples

Simple Definitions 2.5 6 3.5 4.5
Complex M ath Complex Definitions 2.5 1 3.5 3.5

and Examples

Simple Definitions 5.5 5.5 5.5 8.5
Listings Complex Definitions 2.5 2 2 0.5

and Examples

Simple Definitions 10 11.5 9 10.5
C haracters Complex Definitions 0 5 0 1.5

and Examples

Simple Definitions 5 4.5 5.5 4.5
Integers Complex Definitions 1 8.5 1 6

and ExamDles

www.manaraa.com

151

Table 32 — continued

Novice In term ediate Level
Program m ers P rogram m ers

Inductive Reasoning Inductive Reasoning
Average High Average High

Real
Simple Definitions
Complex Definitions

and Examples

3.5
6

8
5

5
1

10
4

Simple Definitions 8.5 9 8.5 10.5
Boolean Complex Definitions

and Examoles
4.5 6.5 2.5 6.5

Simple Definitions 2 7.5 4.5 9.5
Function Complex Definitions

and ExamDles
3 5.5 0.5 5

Simple Definitions 9 9 10.5 9.5
A rray Complex Definitions

and Examples
2 6.5 2.5 5.5

Simple Definitions 5 3.5 11 2.5
Loop Complex Definitions

and ExamDles
5.5 17 2.5 6.5

M ultiple Simple Definitions 3.5 2 8 4.5
Loops Complex Definitions

and Examples
4 9.5 3 7.5

Simple Definitions 3.5 5 6.5 9
Sort Complex Definitions

and Examples
0.5 8 2.5 1

Simple Definitions 7.5 9 8 5.5
Procedures Complex Definitions

and Examples
1.5 6.5 6 9.5

Simple Definitions 4 7.5 1.5 9
Test Complex Definitions

... and Examples
0 1.5 3.5 1

www.manaraa.com

152

APPENDIX H

STUDY 4: PROBLEM STATEMENTS FOR BASIC APPROACH
AND PROGRAMMING TASKS

Part 1 Basic Approach Problem Statements

1. Write a program which reads a line of text and prints out each of the words

correctly, but beginning with the last one entered. For the previous sentence it

would print: '.entered one last the with beginning but correctly words the of each

out prints and text of line a reads which program a Write’.

2. Write a program that computes the minimum number of coins and bills needed to

make change for a particular purchase. The cost of the item and the amount

tendered should be read as data values. Your program should indicate how many

coins and bills of each denomination are needed for change. Use the following

denominations.

Coins: .05, .10, .25

Bills: $1, $5, $10

3. Write a program to determine whether a five-letter word is a palindrome. A

palindrome reads the same backwards and forwards.

4. Write a program which reads a positive integer N, and prints out a list of the

squares and cubes of all the integers from 1 to N inclusive.

5. Write a program which reads a single line of characters and writes them out,

replacing every sequence of consecutive blanks by a single blank.

www.manaraa.com

153

6. Write a program which reads in two integers, each up to 40 digits long, and prints

their product.

7. Write a program to calculate the simple interest on a loan of less than one year's

duration. The input parameters are the amount of the loan, the number of days it

will be lent, and the interest rate.

Part 2 Basic Approach and Programming Problem Statements

8. Warm Up Problem: Write a program which takes the current year, the current

cost of a candy bar in dollars, and an annual inflation rate, and prints a table

showing how much a candy bar will cost for each year during the next quarter

century.

9. Write a program which reads in 100 characters and writes out a table showing the

number of times each of the 26 letters of the alphabet appears.

10. Write a program which reads in 20 words and prints them out in alphabetical

order.

11. Write a program which reads in 20 integers and prints them out in ascending

order.

